We propose a deep learning method for the numerical solution of partial differential equations that arise as gradient flows. The method relies on the Brezis–Ekeland principle, which naturally defines an objective function to be minimized, and so is ideally suited for a machine learning approach using deep neural networks. We describe our approach in a general framework and illustrate the method with the help of an example implementation for the heat equation in space dimensions two to seven.

Deep learning for gradient flows using the Brezis–Ekeland principle / Carini, Laura; Jensen, Max; Nürnberg, Robert. - In: ARCHIVUM MATHEMATICUM. - ISSN 0044-8753. - 59:3(2023), pp. 249-261. [10.5817/AM2023-3-249]

Deep learning for gradient flows using the Brezis–Ekeland principle

Nürnberg, Robert
2023-01-01

Abstract

We propose a deep learning method for the numerical solution of partial differential equations that arise as gradient flows. The method relies on the Brezis–Ekeland principle, which naturally defines an objective function to be minimized, and so is ideally suited for a machine learning approach using deep neural networks. We describe our approach in a general framework and illustrate the method with the help of an example implementation for the heat equation in space dimensions two to seven.
2023
3
Carini, Laura; Jensen, Max; Nürnberg, Robert
Deep learning for gradient flows using the Brezis–Ekeland principle / Carini, Laura; Jensen, Max; Nürnberg, Robert. - In: ARCHIVUM MATHEMATICUM. - ISSN 0044-8753. - 59:3(2023), pp. 249-261. [10.5817/AM2023-3-249]
File in questo prodotto:
File Dimensione Formato  
eqdlaura.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 691.66 kB
Formato Adobe PDF
691.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/372019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact