Stroke is the main cause of adult motor disability. Nevertheless, recent meta-analyses show that the theoretical models conceived to explain the post-stroke brain reorganization are inaccurate and therefore misleading in laying the theoretical foundation for rehabilitation protocols. Mixed results are reported especially in works investigating the excitability properties of the stroke injured brain. Shedding light on the reasons that brought to such mixed results is the central topic of this doctoral thesis. In particular, this confounding evidence is here discussed and tackled in the light of recent works employing brain-state dependent stimulation protocols. These works have been of paramount importance, as they showed that the effects of non-invasive stimulation (TMS and/or rTMS) on the hand knob of the motor cortex depend on the instantaneous sensorimotor state. This local state is largely determined by the phase of the mu-alpha oscillations, with the negative peak representing a high excitability condition. Brain-state dependent results show that controlling for the local state at the moment of stimulation is crucial in order to reduce variability in studies investigating cortical excitability: an approach that has never been employed in stroke literature, so far. In this doctoral thesis, new evidence is provided on affected and unaffected hemispheres’ excitability properties depending on the local state at the moment of stimulation. This previously uncontrolled state-dependent variability is here proposed as one of the factors at the basis of the mixed results in stroke literature. Furthermore, the current models aimed at explaining post-stroke brain reorganization do not take into account factors that recent works suggest might contribute to stroke recovery. In fact, it is here suggested that: interhemispheric inhibition should not be interpreted as competition, structural reserve should be assessed also at the level of the corpus callosum, diaschisis processes should be taken into account and structural and functional connectivity patterns should be included in patients’ assessment. Finally, the excitability properties of the stroke brain have been often inferred comparing stroke patients’ with young healthy controls’. In this regard, it is here proposed that only healthy peers should be included in the control groups, as brain structural changes due to healthy aging have an impact on corticospinal excitability. The aforementioned functional and structural issues are addressed in the following chapters by means of different techniques (i.e. TMS-EEG, MRI, MEG). In particular, in Chapter 1, a new framework of post-stroke brain reorganization is proposed, in which previously over-looked factors are suggested to be essential in the understanding of the potential plastic changes following stroke. Specifically, a new account where interhemispheric inhibition is interpreted in terms of integration and not competition, is supported. Moreover, the proposed framework includes recent pieces of evidence suggesting that structural reserve should be evaluated in the individual patient not only at the level of the cortex, but also in the different sections of the callosum. Finally, it is proposed that structural damage is not static, but rather dynamic as it continues also after the stroke episode through dischiasis processes. In Chapter 2, new knowledge is provided on the different excitability properties of the two hemispheres of stroke patients. In this chapter, TMS-EEG data of stimulation on both the affected and unaffected motor cortex in severe chronic strokes are analysed with a brain-state dependent approach. For the first time, it is shown that the excitability properties of the affected and unaffected hemispheres differ as the local state at the moment of stimulation influences the two hemispheres’ response differently. In particular, the strong and simplified TMS-evoked response in the affected hemisphere, previously reported in severe patients, is shown to depend on a disruption of the differentiation between the high and low excitability states of the motor cortex, determined by the instantaneous phase of alpha oscillations. This low differentiation between excitability states in the affected hemisphere should be systematically investigated, as it could be a potential feature of patients who experience poor recovery. Furthermore, in Chapter 3, connectivity at the individual alpha peak is investigated in a big cohort of healthy participants, in a resting state MEG dataset. This work was implemented because alpha connectivity networks have been shown to predict stroke recovery. For this reason, there is a necessity to reliably assess connectivity at alpha before and after rehabilitation, as this could be informative on the efficacy of rehabilitation. Specifically, it is shown that using complementary phase-coherence metrics is more effective to estimate connectivity patterns at source level. This compound approach is proposed as a tool to better control the modulatory effects of rehabilitation stimulation protocols, in order to identify which are the changes in activity patterns that are potentially responsible for recovery. Finally, in Chapter 4 brain structural changes associated with healthy aging are investigated in a big cohort of participants aged between 18 and 90 years old, both in terms of cortical thinning and cortical myelin concentration loss. In particular, given recent evidence on the relationship between cortical myelin content and corticospinal excitability, it is shown that age-dependent myelin loss occurs mostly at the level of the premotor, motor and sensory cortices. These structural changes need to be taken into account when stroke patients are compared with controls. In fact, since stroke patients are often in their elderly, these age-related structural changes need to be controlled by including only age-matched healthy participants in control groups, as this is not often a fulfilled criterion in stroke studies. To conclude, this doctoral thesis proposes that the current models’ inaccuracy depends on 1) patients’ individual structural and functional factors that have not been taken into account in previous models of brain reorganization post-stroke (Chapter 1), 2) brain-state dependent variability in stimulation effects that have not been controlled for in stroke literature (Chapter 2), 3) a lack of a systematic method to assess the effects of stimulation rehabilitation protocols (Chapter 3) and 4) structural brain changes due to healthy aging, that affect also the stroke brain, and that are not taken into account when patients are compared with young controls in corticospinal excitability studies (Chapter 4). To the author’s knowledge, this is the first work aimed at explaining mixed results in stroke literature from different perspectives and using different neuroimaging techniques for functional and structural anomalies, exploiting recent brain-state dependent approaches for the analysis of stroke patients’ data.
Towards individualized TMS-EEG pipelines for stroke rehabilitation: the importance of individual structural and functional variability / Brancaccio, Arianna. - (2023 Mar 07), pp. 1-211. [10.15168/11572_371068]
Towards individualized TMS-EEG pipelines for stroke rehabilitation: the importance of individual structural and functional variability
Brancaccio, Arianna
2023-03-07
Abstract
Stroke is the main cause of adult motor disability. Nevertheless, recent meta-analyses show that the theoretical models conceived to explain the post-stroke brain reorganization are inaccurate and therefore misleading in laying the theoretical foundation for rehabilitation protocols. Mixed results are reported especially in works investigating the excitability properties of the stroke injured brain. Shedding light on the reasons that brought to such mixed results is the central topic of this doctoral thesis. In particular, this confounding evidence is here discussed and tackled in the light of recent works employing brain-state dependent stimulation protocols. These works have been of paramount importance, as they showed that the effects of non-invasive stimulation (TMS and/or rTMS) on the hand knob of the motor cortex depend on the instantaneous sensorimotor state. This local state is largely determined by the phase of the mu-alpha oscillations, with the negative peak representing a high excitability condition. Brain-state dependent results show that controlling for the local state at the moment of stimulation is crucial in order to reduce variability in studies investigating cortical excitability: an approach that has never been employed in stroke literature, so far. In this doctoral thesis, new evidence is provided on affected and unaffected hemispheres’ excitability properties depending on the local state at the moment of stimulation. This previously uncontrolled state-dependent variability is here proposed as one of the factors at the basis of the mixed results in stroke literature. Furthermore, the current models aimed at explaining post-stroke brain reorganization do not take into account factors that recent works suggest might contribute to stroke recovery. In fact, it is here suggested that: interhemispheric inhibition should not be interpreted as competition, structural reserve should be assessed also at the level of the corpus callosum, diaschisis processes should be taken into account and structural and functional connectivity patterns should be included in patients’ assessment. Finally, the excitability properties of the stroke brain have been often inferred comparing stroke patients’ with young healthy controls’. In this regard, it is here proposed that only healthy peers should be included in the control groups, as brain structural changes due to healthy aging have an impact on corticospinal excitability. The aforementioned functional and structural issues are addressed in the following chapters by means of different techniques (i.e. TMS-EEG, MRI, MEG). In particular, in Chapter 1, a new framework of post-stroke brain reorganization is proposed, in which previously over-looked factors are suggested to be essential in the understanding of the potential plastic changes following stroke. Specifically, a new account where interhemispheric inhibition is interpreted in terms of integration and not competition, is supported. Moreover, the proposed framework includes recent pieces of evidence suggesting that structural reserve should be evaluated in the individual patient not only at the level of the cortex, but also in the different sections of the callosum. Finally, it is proposed that structural damage is not static, but rather dynamic as it continues also after the stroke episode through dischiasis processes. In Chapter 2, new knowledge is provided on the different excitability properties of the two hemispheres of stroke patients. In this chapter, TMS-EEG data of stimulation on both the affected and unaffected motor cortex in severe chronic strokes are analysed with a brain-state dependent approach. For the first time, it is shown that the excitability properties of the affected and unaffected hemispheres differ as the local state at the moment of stimulation influences the two hemispheres’ response differently. In particular, the strong and simplified TMS-evoked response in the affected hemisphere, previously reported in severe patients, is shown to depend on a disruption of the differentiation between the high and low excitability states of the motor cortex, determined by the instantaneous phase of alpha oscillations. This low differentiation between excitability states in the affected hemisphere should be systematically investigated, as it could be a potential feature of patients who experience poor recovery. Furthermore, in Chapter 3, connectivity at the individual alpha peak is investigated in a big cohort of healthy participants, in a resting state MEG dataset. This work was implemented because alpha connectivity networks have been shown to predict stroke recovery. For this reason, there is a necessity to reliably assess connectivity at alpha before and after rehabilitation, as this could be informative on the efficacy of rehabilitation. Specifically, it is shown that using complementary phase-coherence metrics is more effective to estimate connectivity patterns at source level. This compound approach is proposed as a tool to better control the modulatory effects of rehabilitation stimulation protocols, in order to identify which are the changes in activity patterns that are potentially responsible for recovery. Finally, in Chapter 4 brain structural changes associated with healthy aging are investigated in a big cohort of participants aged between 18 and 90 years old, both in terms of cortical thinning and cortical myelin concentration loss. In particular, given recent evidence on the relationship between cortical myelin content and corticospinal excitability, it is shown that age-dependent myelin loss occurs mostly at the level of the premotor, motor and sensory cortices. These structural changes need to be taken into account when stroke patients are compared with controls. In fact, since stroke patients are often in their elderly, these age-related structural changes need to be controlled by including only age-matched healthy participants in control groups, as this is not often a fulfilled criterion in stroke studies. To conclude, this doctoral thesis proposes that the current models’ inaccuracy depends on 1) patients’ individual structural and functional factors that have not been taken into account in previous models of brain reorganization post-stroke (Chapter 1), 2) brain-state dependent variability in stimulation effects that have not been controlled for in stroke literature (Chapter 2), 3) a lack of a systematic method to assess the effects of stimulation rehabilitation protocols (Chapter 3) and 4) structural brain changes due to healthy aging, that affect also the stroke brain, and that are not taken into account when patients are compared with young controls in corticospinal excitability studies (Chapter 4). To the author’s knowledge, this is the first work aimed at explaining mixed results in stroke literature from different perspectives and using different neuroimaging techniques for functional and structural anomalies, exploiting recent brain-state dependent approaches for the analysis of stroke patients’ data.File | Dimensione | Formato | |
---|---|---|---|
Brancaccio Arianna Doctoral Thesis.pdf
embargo fino al 07/03/2025
Descrizione: Arianna Brancaccio Doctoral thesis
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Creative commons
Dimensione
5.63 MB
Formato
Adobe PDF
|
5.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione