Earth-based gravitational-wave detectors will be limited by quantum noise in a large part of their spectrum. The most promising technique to achieve a broadband reduction of such noise is the injection of a frequency-dependent squeezed vacuum state from the output port of the detector, with the squeeze angle rotated by the reflection off a Fabry-Perot filter cavity. One of the most important parameters limiting the squeezing performance is represented by the optical losses of the filter cavity. We report here the operation of a 300 m filter cavity prototype installed at the National Astronomical Observatory of Japan. The cavity is designed to obtain a rotation of the squeeze angle below 100 Hz. After achieving the resonance of the cavity with a multiwavelength technique, the round trip losses have been measured to be between 50 and 90 ppm. This result demonstrates that with realistic assumptions on the input squeeze factor and the other optical losses, a quantum noise reduction of at least 4 dB in the frequency region dominated by radiation pressure can be achieved.

Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors / Capocasa, Eleonora; Guo, Yuefan; Eisenmann, Marc; Zhao, Yuhang; Tomura, Akihiro; Arai, Koji; Aso, Yoichi; Marchiò, Manuel; Pinard, Laurent; Prat, Pierre; Somiya, Kentaro; Schnabel, Roman; Tacca, Matteo; Takahashi, Ryutaro; Tatsumi, Daisuke; Leonardi, Matteo; Barsuglia, Matteo; Flaminio, Raffaele. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 98:2(2018). [10.1103/PhysRevD.98.022010]

Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors

Leonardi, Matteo;
2018-01-01

Abstract

Earth-based gravitational-wave detectors will be limited by quantum noise in a large part of their spectrum. The most promising technique to achieve a broadband reduction of such noise is the injection of a frequency-dependent squeezed vacuum state from the output port of the detector, with the squeeze angle rotated by the reflection off a Fabry-Perot filter cavity. One of the most important parameters limiting the squeezing performance is represented by the optical losses of the filter cavity. We report here the operation of a 300 m filter cavity prototype installed at the National Astronomical Observatory of Japan. The cavity is designed to obtain a rotation of the squeeze angle below 100 Hz. After achieving the resonance of the cavity with a multiwavelength technique, the round trip losses have been measured to be between 50 and 90 ppm. This result demonstrates that with realistic assumptions on the input squeeze factor and the other optical losses, a quantum noise reduction of at least 4 dB in the frequency region dominated by radiation pressure can be achieved.
2018
2
Capocasa, Eleonora; Guo, Yuefan; Eisenmann, Marc; Zhao, Yuhang; Tomura, Akihiro; Arai, Koji; Aso, Yoichi; Marchiò, Manuel; Pinard, Laurent; Prat, Pierre; Somiya, Kentaro; Schnabel, Roman; Tacca, Matteo; Takahashi, Ryutaro; Tatsumi, Daisuke; Leonardi, Matteo; Barsuglia, Matteo; Flaminio, Raffaele
Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors / Capocasa, Eleonora; Guo, Yuefan; Eisenmann, Marc; Zhao, Yuhang; Tomura, Akihiro; Arai, Koji; Aso, Yoichi; Marchiò, Manuel; Pinard, Laurent; Prat, Pierre; Somiya, Kentaro; Schnabel, Roman; Tacca, Matteo; Takahashi, Ryutaro; Tatsumi, Daisuke; Leonardi, Matteo; Barsuglia, Matteo; Flaminio, Raffaele. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 98:2(2018). [10.1103/PhysRevD.98.022010]
File in questo prodotto:
File Dimensione Formato  
PhysRevD.98.022010.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/370428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact