In this contributionwe describe the second run of RSD (ResistiveAC-Coupled Silicon Detectors) designed at INFN Torino and produced by Fondazione Bruno Kessler (FBK), Trento. RSDare n-in-p detectors intended for 4D particle tracking based on the LGAD technology that get rid of any segmentation implant in order to achieve the 100% fill-factor. They are characterized by three key-elements, (i) a continuous gain implant, (ii) a resistive n-cathode and (iii) a dielectric coupling layer deposited on top, guaranteeing a good spatial reconstruction of the hit positionwhile benefiting fromthe good timing properties of LGADs. Wewill start fromthe very promising results of our RSD1 batch in terms of tracking performances and then we will move to the description of the design of the RSD2 run. In particular, the principles driving the sensor design and the specific AC-electrode layout adopted to optimize the signal confinement will be addressed.
The second production of RSD (AC-LGAD) at FBK / Mandurrino, M.; Arcidiacono, R.; Bisht, A.; Borghi, G.; Boscardin, M.; Cartiglia, N.; Centis Vignali, M.; Dalla Betta, G. -F.; Ferrero, M.; Ficorella, F.; Hammad Ali, O.; Martinez Rojas, A. D.; Menzio, L.; Pancheri, L.; Paternoster, G.; Siviero, F.; Sola, V.; Tornago, M.. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - ELETTRONICO. - 17:8(2022). [10.1088/1748-0221/17/08/c08001]
The second production of RSD (AC-LGAD) at FBK
A. Bisht;M. Boscardin;G. -F. Dalla Betta;F. Ficorella;L. Pancheri;
2022-01-01
Abstract
In this contributionwe describe the second run of RSD (ResistiveAC-Coupled Silicon Detectors) designed at INFN Torino and produced by Fondazione Bruno Kessler (FBK), Trento. RSDare n-in-p detectors intended for 4D particle tracking based on the LGAD technology that get rid of any segmentation implant in order to achieve the 100% fill-factor. They are characterized by three key-elements, (i) a continuous gain implant, (ii) a resistive n-cathode and (iii) a dielectric coupling layer deposited on top, guaranteeing a good spatial reconstruction of the hit positionwhile benefiting fromthe good timing properties of LGADs. Wewill start fromthe very promising results of our RSD1 batch in terms of tracking performances and then we will move to the description of the design of the RSD2 run. In particular, the principles driving the sensor design and the specific AC-electrode layout adopted to optimize the signal confinement will be addressed.File | Dimensione | Formato | |
---|---|---|---|
JINST_2022_1.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
582.5 kB
Formato
Adobe PDF
|
582.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione