The underlying idea of the Semantic Web is that web content should be expressed not only in natural language but also in a language that can be unambiguously understood, interpreted and used by software agents, thus permitting them to find, share and integrate information more easily. The central notion of the Semantic Web's syntax are ontologies, shared vocabularies providing taxonomies of concepts, objects and relationships between them, which describe particular domains of knowledge. A vocabulary stores words, synonyms, word sense definitions (i.e. glosses), relations between word senses and concepts; such a vocabulary is generally referred to as the Controlled Vocabulary (CV) if choice or selection of terms are done by domain specialists. A facet is a distinct and dimensional feature of a concept or a term that allows a taxonomy, ontology or CV to be viewed or ordered in multiple ways, rather than in a single way. The facet is clearly defined, mutually exclusive, and composed of collectively exhaustive properties or characteristics of a domain. For example, a collection of rice might be represented using a name facet, place facet etc. This thesis presents a methodology for producing mappings between Controlled Vocabularies, based on a technique called \Hidden Semantic Matching". The \Hidden" word stands for it not relying on any sort of externally provided background knowledge. The sole exploited knowledge comes from the \semantic context" of the same CVs which are being matched. We build a facet for each concept of these CVs, considering more general concepts (broader terms), less general concepts (narrow terms) or related concepts (related terms).Together these form a concept facet (CF) which is then used to boost the matching process.

Aligning Controlled vocabularies for enabling semantic matching in a distributed knowledge management system / Morshed, Ahsan. - (2010), pp. 1-126.

Aligning Controlled vocabularies for enabling semantic matching in a distributed knowledge management system

Morshed, Ahsan
2010-01-01

Abstract

The underlying idea of the Semantic Web is that web content should be expressed not only in natural language but also in a language that can be unambiguously understood, interpreted and used by software agents, thus permitting them to find, share and integrate information more easily. The central notion of the Semantic Web's syntax are ontologies, shared vocabularies providing taxonomies of concepts, objects and relationships between them, which describe particular domains of knowledge. A vocabulary stores words, synonyms, word sense definitions (i.e. glosses), relations between word senses and concepts; such a vocabulary is generally referred to as the Controlled Vocabulary (CV) if choice or selection of terms are done by domain specialists. A facet is a distinct and dimensional feature of a concept or a term that allows a taxonomy, ontology or CV to be viewed or ordered in multiple ways, rather than in a single way. The facet is clearly defined, mutually exclusive, and composed of collectively exhaustive properties or characteristics of a domain. For example, a collection of rice might be represented using a name facet, place facet etc. This thesis presents a methodology for producing mappings between Controlled Vocabularies, based on a technique called \Hidden Semantic Matching". The \Hidden" word stands for it not relying on any sort of externally provided background knowledge. The sole exploited knowledge comes from the \semantic context" of the same CVs which are being matched. We build a facet for each concept of these CVs, considering more general concepts (broader terms), less general concepts (narrow terms) or related concepts (related terms).Together these form a concept facet (CF) which is then used to boost the matching process.
2010
XX
2009-2010
Informatica e Studi Aziendali (cess.4/11/12)
Information and Communication Technology
Giunchiglia, Fausto
no
Inglese
Settore INF/01 - Informatica
Settore MAT/01 - Logica Matematica
File in questo prodotto:
File Dimensione Formato  
PhD-Thesis_Ahsan_Morshed_12042010.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/369222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact