Resveratrol is a polyphenolic compound produced by various plants and present in dietary sources such as red wine. In recent years, its beneficial effects for human health, including protection from heart diseases and cancer prevention, have attracted increasing interest. Resveratrol acts both as an antioxidant and a prooxidant agent when works in vivo with Cu(II) ions occurring naturally in living organisms. The aim of this work is to study the gas phase reactivity of resveratrol in presence of copper and iron ions, in order to more insights on the role of copper in the proposed biological mechanism. By electrospray ionization (ESI) mass spectrometry we have produced and detected some resveratrol-copper complexes by using a resveratrol/CuSO4 solution in acetonitrile/water, and their most stable structures have been calculated at the B3LYP/6-311G(d) level of theory. The formation of dehydrodimer product was also detected in ESI-MS/MS experiments and its structure assigned with evidences for isomeric compounds from copper and iron reactions with resveratrol. Density Functional Theory (DFT) calculations have been carried out to elucidate reaction mechanisms. Finally, the crucial role of the para-OH group in resveratrol structure has been demonstrated by investigating reactions with copper sulfate of synthetic analogues, bearing different number and position of OH groups.
An Electrospray Ionization Mass Spectrometric Study on Reactivity of Resveratrol Induced by Metal Ions / Tamboli, Vajir. - (2011), pp. 1-114.
An Electrospray Ionization Mass Spectrometric Study on Reactivity of Resveratrol Induced by Metal Ions
Tamboli, Vajir
2011-01-01
Abstract
Resveratrol is a polyphenolic compound produced by various plants and present in dietary sources such as red wine. In recent years, its beneficial effects for human health, including protection from heart diseases and cancer prevention, have attracted increasing interest. Resveratrol acts both as an antioxidant and a prooxidant agent when works in vivo with Cu(II) ions occurring naturally in living organisms. The aim of this work is to study the gas phase reactivity of resveratrol in presence of copper and iron ions, in order to more insights on the role of copper in the proposed biological mechanism. By electrospray ionization (ESI) mass spectrometry we have produced and detected some resveratrol-copper complexes by using a resveratrol/CuSO4 solution in acetonitrile/water, and their most stable structures have been calculated at the B3LYP/6-311G(d) level of theory. The formation of dehydrodimer product was also detected in ESI-MS/MS experiments and its structure assigned with evidences for isomeric compounds from copper and iron reactions with resveratrol. Density Functional Theory (DFT) calculations have been carried out to elucidate reaction mechanisms. Finally, the crucial role of the para-OH group in resveratrol structure has been demonstrated by investigating reactions with copper sulfate of synthetic analogues, bearing different number and position of OH groups.File | Dimensione | Formato | |
---|---|---|---|
FINAL_VERSION_OF_THESIS.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.24 MB
Formato
Adobe PDF
|
3.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione