This doctorate thesis focuses on the analysis, design and characterization of Radio-Frequency (RF) Micro-Electro-Mechanical System (MEMS) switches for space applications. The work was inspired and supported by the European Space Agency (ESA) Contract No. ITT AO/1-5288/06/NL/GLC ?High Reliability Redundancy Switch?. The main purpose of the project is the design and realization of high-reliability RF MEMS switches for satellite payload redundancy networks. Up to now, the common satellite architecture implements redundancy networks by means of bulky devices. RF MEMS switches allow for extremely miniaturized networks along with outstanding performances in terms of losses, power consumption and linearity, not really achievable with solid state devices. As requirements for such an application, RF MEMS switches have to survive under extremely harsh environmental and operating conditions. In particular the device should handle continuous bias voltage (at least for 10 years), 5 W of RF input power and around 1000 actuation cycles without meaningful electrical and mechanical failure. The thesis proposes novel mechanical solutions to accomplish this task, exploiting active restoring mechanisms able to restore the previous status of switch in case of reversible failure. This work also provides a deep insight on the main reliability aspects of a RF MEMS device such as dielectric charging, contact degradation and power handling.

Novel Design Solutions for High Reliability RF MEMS Switches / Solazzi, Francesco. - (2011), pp. 1-197.

Novel Design Solutions for High Reliability RF MEMS Switches

Solazzi, Francesco
2011-01-01

Abstract

This doctorate thesis focuses on the analysis, design and characterization of Radio-Frequency (RF) Micro-Electro-Mechanical System (MEMS) switches for space applications. The work was inspired and supported by the European Space Agency (ESA) Contract No. ITT AO/1-5288/06/NL/GLC ?High Reliability Redundancy Switch?. The main purpose of the project is the design and realization of high-reliability RF MEMS switches for satellite payload redundancy networks. Up to now, the common satellite architecture implements redundancy networks by means of bulky devices. RF MEMS switches allow for extremely miniaturized networks along with outstanding performances in terms of losses, power consumption and linearity, not really achievable with solid state devices. As requirements for such an application, RF MEMS switches have to survive under extremely harsh environmental and operating conditions. In particular the device should handle continuous bias voltage (at least for 10 years), 5 W of RF input power and around 1000 actuation cycles without meaningful electrical and mechanical failure. The thesis proposes novel mechanical solutions to accomplish this task, exploiting active restoring mechanisms able to restore the previous status of switch in case of reversible failure. This work also provides a deep insight on the main reliability aspects of a RF MEMS device such as dielectric charging, contact degradation and power handling.
2011
XXIII
2010-2011
Ingegneria e Scienza dell'Informaz (cess.4/11/12)
Information and Communication Technology
Margesin, Benno
Faes, Alessandro
no
Inglese
Settore ING-INF/01 - Elettronica
Settore ING-INF/02 - Campi Elettromagnetici
File in questo prodotto:
File Dimensione Formato  
2011_05_05_Solazzi_HighReliabilityRFMEMS.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 11.77 MB
Formato Adobe PDF
11.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/369154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact