In search based test case generation, most of the research works focus on the single-objective formulation of the test case generation problem. However, there are a wide variety of multi- and many-objective optimization strategies that could offer advantages currently not investigated when addressing the problem of test case generation. Furthermore, existing techniques and available tools mainly handle test generation for programs with primitive inputs, such as numeric or string input. The techniques and tools applicable to such types of programs often do not effectively scale up to large sizes and complex inputs. In this thesis work, at the unit level, branch coverage is reformulated as a many-objective optimization problem, as opposed to the state of the art single-objective formulation, and a novel algorithm is proposed for the generation of branch adequate test cases. At the system level, this thesis proposes a test generation approach that combines stochastic grammars with genetic programming for the generation of branch adequate test cases. Furthermore, the combination of stochastic grammars and genetic programming is also investigated in the context of field failure reproduction for programs with highly structured input.
Evolutionary Test Case Generation via Many Objective Optimization and Stochastic Grammars / Kifetew, Fitsum Meshesha. - (2015), pp. 1-148.
Evolutionary Test Case Generation via Many Objective Optimization and Stochastic Grammars
Kifetew, Fitsum Meshesha
2015-01-01
Abstract
In search based test case generation, most of the research works focus on the single-objective formulation of the test case generation problem. However, there are a wide variety of multi- and many-objective optimization strategies that could offer advantages currently not investigated when addressing the problem of test case generation. Furthermore, existing techniques and available tools mainly handle test generation for programs with primitive inputs, such as numeric or string input. The techniques and tools applicable to such types of programs often do not effectively scale up to large sizes and complex inputs. In this thesis work, at the unit level, branch coverage is reformulated as a many-objective optimization problem, as opposed to the state of the art single-objective formulation, and a novel algorithm is proposed for the generation of branch adequate test cases. At the system level, this thesis proposes a test generation approach that combines stochastic grammars with genetic programming for the generation of branch adequate test cases. Furthermore, the combination of stochastic grammars and genetic programming is also investigated in the context of field failure reproduction for programs with highly structured input.File | Dimensione | Formato | |
---|---|---|---|
Fitsum_Kifetew_thesis_unitn.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
849.76 kB
Formato
Adobe PDF
|
849.76 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione