This document presents a part of the wide research carried out on modern timber buildings by the timber research group of the University of Trento. In the last five years several experimental and numerical analysis have been performed on crucial structural topics about multistorey timber construction. The efforts have been focused on the traditional light timber framed system (LTF) and on the log-house system (LH). Concerning the LTF, different aspects of the structural behaviour to the lateral load bearing structure such as walls and connection devices were investigated through experimental tests from the single component up to the full-scale building tested on shake table. The goals of these capstone tests, carried out on three-storey buildings, were the investigation of peculiar aspects which especially for the European constructive tradition were not sufficiently discussed. The same layout was follow for the traditional log-house system. In a first step of the research campaign the behaviour of single components (joints, reinforce elements) was tested and analysed in order to form the basis of the second part that was dedicated to the full scale shear walls tests and analysis. The thesis is organized in two main parts. In the opening chapters, after a brief introduction to the constructive system, the seismic behaviour of light timber framed constructions is analysed. The validation of the predictive models and the mechanical characterization of the gypsum fibreboard sheathing material are presented. Different steps of the S.E.R.I.E.S. project are summarized (tests on connection and real scale walls - shake table tests). The aim of the discussion is the deeper understanding of the boundary condition and the reliability of the tests on the single component on the real scale model. In the second part, the mechanical characterization of modern timber log-house building through experimental tests is presented. The strong cooperation among Rubner Haus Company and the timber research group of the University of Trento made possible a detailed experimental campaign organized on two steps. The first is focused on the evaluation of the corner joints proprieties by means of analysis of small portion of walls. The second part deals with the behaviour of full-scale walls with vertical loads in different geometries (corner joints types, length and presence of openings). The two innovative test setup were designed to reproduce the boundary condition of the structural elements of the building, and to minimize the effects of the test pparatus on the results. The outcomes of the tests show a complex interaction between contributions provided by different mechanisms. In the last chapters, a simplified model suitable to predict the overall load displacement curves of the wall is introduced.

Experimental investigations on seismic Behaviour of Light Timber framed Buildings and log-house traditional constructive System / Grossi, Paolo. - (2015), pp. 1-333.

Experimental investigations on seismic Behaviour of Light Timber framed Buildings and log-house traditional constructive System

Grossi, Paolo
2015-01-01

Abstract

This document presents a part of the wide research carried out on modern timber buildings by the timber research group of the University of Trento. In the last five years several experimental and numerical analysis have been performed on crucial structural topics about multistorey timber construction. The efforts have been focused on the traditional light timber framed system (LTF) and on the log-house system (LH). Concerning the LTF, different aspects of the structural behaviour to the lateral load bearing structure such as walls and connection devices were investigated through experimental tests from the single component up to the full-scale building tested on shake table. The goals of these capstone tests, carried out on three-storey buildings, were the investigation of peculiar aspects which especially for the European constructive tradition were not sufficiently discussed. The same layout was follow for the traditional log-house system. In a first step of the research campaign the behaviour of single components (joints, reinforce elements) was tested and analysed in order to form the basis of the second part that was dedicated to the full scale shear walls tests and analysis. The thesis is organized in two main parts. In the opening chapters, after a brief introduction to the constructive system, the seismic behaviour of light timber framed constructions is analysed. The validation of the predictive models and the mechanical characterization of the gypsum fibreboard sheathing material are presented. Different steps of the S.E.R.I.E.S. project are summarized (tests on connection and real scale walls - shake table tests). The aim of the discussion is the deeper understanding of the boundary condition and the reliability of the tests on the single component on the real scale model. In the second part, the mechanical characterization of modern timber log-house building through experimental tests is presented. The strong cooperation among Rubner Haus Company and the timber research group of the University of Trento made possible a detailed experimental campaign organized on two steps. The first is focused on the evaluation of the corner joints proprieties by means of analysis of small portion of walls. The second part deals with the behaviour of full-scale walls with vertical loads in different geometries (corner joints types, length and presence of openings). The two innovative test setup were designed to reproduce the boundary condition of the structural elements of the building, and to minimize the effects of the test pparatus on the results. The outcomes of the tests show a complex interaction between contributions provided by different mechanisms. In the last chapters, a simplified model suitable to predict the overall load displacement curves of the wall is introduced.
2015
XXVII
2014-2015
Ingegneria civile, ambientale e mecc (29/10/12-)
Engineering of Civil and Mechanical Structural Systems
Piazza, Maurizio
Tomasi, Roberto
no
Inglese
Settore ICAR/09 - Tecnica delle Costruzioni
File in questo prodotto:
File Dimensione Formato  
THESIS.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 358.84 MB
Formato Adobe PDF
358.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/369018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact