Embedded systems are formed by hardware and software components that interact with the physical environment and thus may be modeled as Hybrid Systems. Due to the complexity the system,there is an increasing need of automatic techniques to support the design phase, ensuring that a system behaves as expected in all the possible operating conditions.In this thesis, we propose novel techniques for the verification and the validation of hybrid systems using Satisfiability Modulo Theories (SMT). SMT is an established technique that has been used successfully in many verification approaches, targeted for both hardware and software systems. The use of SMT to verify hybrid systems has been limited, due to the restricted support of complex continuous dynamics and the lack of scalability. The contribution of the thesis is twofold. First, we propose novel encoding techniques, which widen the applicability and improve the effectiveness of the SMT-based approaches. Second, we propose novel SMT-based algorithms that improve the performance of the existing state of the art approaches. In particular we show algorithms to solve problems such as invariant verification, scenario verification and parameter synthesis. The algorithms fully exploit the underlying structure of a network of hybrid systems and the functionalities of modern SMT-solvers. We show and discuss the effectiveness of the the proposed techniques when applied to benchmarks from the hybrid systems domain.

Verification of Hybrid Systems using Satisfiability Modulo Theories / Mover, Sergio. - (2014), pp. 1-282.

Verification of Hybrid Systems using Satisfiability Modulo Theories

Mover, Sergio
2014-01-01

Abstract

Embedded systems are formed by hardware and software components that interact with the physical environment and thus may be modeled as Hybrid Systems. Due to the complexity the system,there is an increasing need of automatic techniques to support the design phase, ensuring that a system behaves as expected in all the possible operating conditions.In this thesis, we propose novel techniques for the verification and the validation of hybrid systems using Satisfiability Modulo Theories (SMT). SMT is an established technique that has been used successfully in many verification approaches, targeted for both hardware and software systems. The use of SMT to verify hybrid systems has been limited, due to the restricted support of complex continuous dynamics and the lack of scalability. The contribution of the thesis is twofold. First, we propose novel encoding techniques, which widen the applicability and improve the effectiveness of the SMT-based approaches. Second, we propose novel SMT-based algorithms that improve the performance of the existing state of the art approaches. In particular we show algorithms to solve problems such as invariant verification, scenario verification and parameter synthesis. The algorithms fully exploit the underlying structure of a network of hybrid systems and the functionalities of modern SMT-solvers. We show and discuss the effectiveness of the the proposed techniques when applied to benchmarks from the hybrid systems domain.
2014
XXV
2012-2013
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Cimatti, Alessandro
Tonetta, Stefano
no
Inglese
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
Settore MAT/01 - Logica Matematica
File in questo prodotto:
File Dimensione Formato  
main.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact