The mechanics of impacts is not yet well understood due to the complexity of materials behaviour under extreme stress and strain conditions and is thus of challenge for fundamental research, as well as relevant in several areas of applied sciences and engineering. The involved complex contact and strain-rate dependent phenomena include geometrical and materials non-linearities, such as wave and fracture propagation, plasticity, buckling, and friction. The theoretical description of such non-linearities has reached a level of advance maturity only singularly, but when coupled -due to the severe mathematical complexity- remains limited. Moreover, related experimental tests are difficult and expensive, and usually not able to quantify and discriminate between the phenomena involved. In this scenario, computational simulation emerges as a fundamental and complementary tool for the investigation of such otherwise intractable problems. The aim of this PhD research was the development and use of computational models to investigate the behaviour of materials and structures undergoing simultaneously extreme contact stresses and strain-rates, and at different size and time scales. We focused on basic concepts not yet understood, studying both engineering and bio-inspired solutions. In particular, the developed models were applied to the analysis and optimization of macroscopic composite and of 2D-materials-based multilayer armours, to the buckling-governed behaviour of aerographite tetrapods and of the related networks, and to the crushing behaviour under compression of modified honeycomb structures. As validation of the used approaches, numerical-experimental-analytical comparisons are also proposed for each case.

Computational models for impact mechanics and related protective materials and structures / Signetti, Stefano. - (2017), pp. 1-117.

Computational models for impact mechanics and related protective materials and structures

Signetti, Stefano
2017-01-01

Abstract

The mechanics of impacts is not yet well understood due to the complexity of materials behaviour under extreme stress and strain conditions and is thus of challenge for fundamental research, as well as relevant in several areas of applied sciences and engineering. The involved complex contact and strain-rate dependent phenomena include geometrical and materials non-linearities, such as wave and fracture propagation, plasticity, buckling, and friction. The theoretical description of such non-linearities has reached a level of advance maturity only singularly, but when coupled -due to the severe mathematical complexity- remains limited. Moreover, related experimental tests are difficult and expensive, and usually not able to quantify and discriminate between the phenomena involved. In this scenario, computational simulation emerges as a fundamental and complementary tool for the investigation of such otherwise intractable problems. The aim of this PhD research was the development and use of computational models to investigate the behaviour of materials and structures undergoing simultaneously extreme contact stresses and strain-rates, and at different size and time scales. We focused on basic concepts not yet understood, studying both engineering and bio-inspired solutions. In particular, the developed models were applied to the analysis and optimization of macroscopic composite and of 2D-materials-based multilayer armours, to the buckling-governed behaviour of aerographite tetrapods and of the related networks, and to the crushing behaviour under compression of modified honeycomb structures. As validation of the used approaches, numerical-experimental-analytical comparisons are also proposed for each case.
2017
XXIX
2017-2018
Ingegneria civile, ambientale e mecc (29/10/12-)
Civil, Environmental and Mechanical Engineering
Pugno, Nicola M.
no
Inglese
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore ING-IND/22 - Scienza e Tecnologia dei Materiali
Settore ICAR/08 - Scienza delle Costruzioni
File in questo prodotto:
File Dimensione Formato  
disclaimer.pdf

Solo gestori archivio

Tipologia: Altro materiale allegato (Other attachments)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF   Visualizza/Apri
[ssignetti-2017]_PhD-thesis_with-cover.pdf

Open Access dal 30/06/2019

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Creative commons
Dimensione 80.96 MB
Formato Adobe PDF
80.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact