The propagation of light through an ultracold atomic gas is the main topic of the present work. The thesis consists of two parts. In Part I (Chapters 1,2,3), we give a complete description of the 1D photonic bands of a MI of two-level atoms paying attention to both band diagrams and reflectivity spectra. The role of regular periodicity of the system is addressed within a polariton formalism. The scattering on defects inside lattices of three-level atoms is also studied in view of optical detection of impurities in such structures. The light is used as a probe of systems engineered by the use of other laser beams. Part II (Chapters 4,5) is devoted to the development of a general framework for the time-dependent processing of a propagating slow Dark Polariton in a spatially inhomogeneous system. The coherently tunable atomic gas acts as a Dynamic Photonic Structure. Applications of this concept concerning wavelength conversion and reshaping of the pulse are also discussed for realistic experimental situations.

Light Propagation in Ultracold Atomic Gases / Bariani, Francesco. - (2009), pp. 1-142.

Light Propagation in Ultracold Atomic Gases

Bariani, Francesco
2009-01-01

Abstract

The propagation of light through an ultracold atomic gas is the main topic of the present work. The thesis consists of two parts. In Part I (Chapters 1,2,3), we give a complete description of the 1D photonic bands of a MI of two-level atoms paying attention to both band diagrams and reflectivity spectra. The role of regular periodicity of the system is addressed within a polariton formalism. The scattering on defects inside lattices of three-level atoms is also studied in view of optical detection of impurities in such structures. The light is used as a probe of systems engineered by the use of other laser beams. Part II (Chapters 4,5) is devoted to the development of a general framework for the time-dependent processing of a propagating slow Dark Polariton in a spatially inhomogeneous system. The coherently tunable atomic gas acts as a Dynamic Photonic Structure. Applications of this concept concerning wavelength conversion and reshaping of the pulse are also discussed for realistic experimental situations.
2009
XXII
2008-2009
Fisica (cess.4/11/12)
Physics
Carusotto, Iacopo
no
Inglese
Settore FIS/03 - Fisica della Materia
File in questo prodotto:
File Dimensione Formato  
tesi_bariani.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact