My PhD thesis is focused on geometric Hamiltonian formulation of Quanum Mechanics and its interplay with standard formulation. The main result is the construction of a general prescription to set up a quantum theory as a classical-like theory where quantum dynamics is given by a Hamiltonian vector field on a complex projective space with Kähler structure. In such geometric framework quantum states are represented by classical-like Liouville densities. After a complete characterization of classical-like observables in a finite-dimensional quantum theory, the observable C*-algebra is described in geometric Hamiltonian terms. In the final part of the work, the classical-like Hamiltonian formulation is applied to the study of composite quantum systems providing a notion of entanglement measure.
Geometric Hamiltonian Formulation of Quantum Mechanics / Pastorello, Davide. - (2014), pp. 1-80.
Geometric Hamiltonian Formulation of Quantum Mechanics
Pastorello, Davide
2014-01-01
Abstract
My PhD thesis is focused on geometric Hamiltonian formulation of Quanum Mechanics and its interplay with standard formulation. The main result is the construction of a general prescription to set up a quantum theory as a classical-like theory where quantum dynamics is given by a Hamiltonian vector field on a complex projective space with Kähler structure. In such geometric framework quantum states are represented by classical-like Liouville densities. After a complete characterization of classical-like observables in a finite-dimensional quantum theory, the observable C*-algebra is described in geometric Hamiltonian terms. In the final part of the work, the classical-like Hamiltonian formulation is applied to the study of composite quantum systems providing a notion of entanglement measure.File | Dimensione | Formato | |
---|---|---|---|
Davide_Pastorello_PhD_Thesis.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
750.03 kB
Formato
Adobe PDF
|
750.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione