In principle, the lattice of elementary propositions of a generic quantum system admits a representation in real, complex or quaternionic Hilbert spaces as established by Solèr’s theorem (1995) closing a long standing problem that can be traced back to von Neumann’s mathematical formulation of quantum mechanics. However up to now there are no examples of quantum systems described in Hilbert spaces whose scalar field is different from the set of complex numbers. We show that elementary relativistic systems cannot be described by irreducible strongly-continuous unitary representations of SL(2, C) on real or quaternionic Hilbert spaces as a consequence of some peculiarity of the generators related with the theory of polar decomposition of operators. Indeed such a ”naive” attempt leads necessarily to an equivalent formulation on a complex Hilbert space. Although this conclusion seems to give a definitive answer to the real/quaternionic-quantum-mechanics issue, it lacks consistency since it does not derive from more general physical hypotheses as the complex one does. Trying a more solid approach, in both situations we end up with three possibilities: an equivalent description in terms of a Wigner unitary representation in a real, complex or quaternionic Hilbert space. At this point the ”naive” result turns out to be a definitely important technical lemma, for it forbids the two extreme possibilities. In conclusion, the real/quaternionic theory is actually complex. This improved approach is based upon the concept of von Neumann algebra of observables. Unfortunately, while there exists a thorough literature about these algebras on real and complex Hilbert spaces, an analysis on the notion of von Neumann algebra over a quaternionic Hilbert space is completely absent to our knowledge. There are several issues in trying to define such a mathematical object, first of all the inability to construct linear combination of operators with quaternionic coeffients. Restricting ourselves to unital real *-algebras of operators we are able to prove the von Neumann Double Commutant Theorem also on quaternionc Hilbert spaces. Clearly, this property turns out to be crucial.

On the Necessity of Complex Numbers in Quantum Mechanics / Oppio, Marco. - (2018), pp. 1-213.

On the Necessity of Complex Numbers in Quantum Mechanics

Oppio, Marco
2018-01-01

Abstract

In principle, the lattice of elementary propositions of a generic quantum system admits a representation in real, complex or quaternionic Hilbert spaces as established by Solèr’s theorem (1995) closing a long standing problem that can be traced back to von Neumann’s mathematical formulation of quantum mechanics. However up to now there are no examples of quantum systems described in Hilbert spaces whose scalar field is different from the set of complex numbers. We show that elementary relativistic systems cannot be described by irreducible strongly-continuous unitary representations of SL(2, C) on real or quaternionic Hilbert spaces as a consequence of some peculiarity of the generators related with the theory of polar decomposition of operators. Indeed such a ”naive” attempt leads necessarily to an equivalent formulation on a complex Hilbert space. Although this conclusion seems to give a definitive answer to the real/quaternionic-quantum-mechanics issue, it lacks consistency since it does not derive from more general physical hypotheses as the complex one does. Trying a more solid approach, in both situations we end up with three possibilities: an equivalent description in terms of a Wigner unitary representation in a real, complex or quaternionic Hilbert space. At this point the ”naive” result turns out to be a definitely important technical lemma, for it forbids the two extreme possibilities. In conclusion, the real/quaternionic theory is actually complex. This improved approach is based upon the concept of von Neumann algebra of observables. Unfortunately, while there exists a thorough literature about these algebras on real and complex Hilbert spaces, an analysis on the notion of von Neumann algebra over a quaternionic Hilbert space is completely absent to our knowledge. There are several issues in trying to define such a mathematical object, first of all the inability to construct linear combination of operators with quaternionic coeffients. Restricting ourselves to unital real *-algebras of operators we are able to prove the von Neumann Double Commutant Theorem also on quaternionc Hilbert spaces. Clearly, this property turns out to be crucial.
2018
XXX
2018-2019
Matematica (29/10/12-)
Mathematics
Moretti, Valter
no
Inglese
Settore MAT/07 - Fisica Matematica
File in questo prodotto:
File Dimensione Formato  
Marco_Oppio_-_Tesi_PhD.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri
Disclaimer.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact