Channel coding is the branch of Information Theory which studies the noise that can occur in data transmitted through a channel. Algebraic Coding Theory is the part of Channel Coding which studies the possibility to detect and correct errors using algebraic and geometric techniques. Nowadays, the best performing linear codes are known to be mostly algebraic geometry codes, also named Goppa codes, which arise from an algebraic curve over a finite field, by the pioneering construction due to V. D. Goppa. The best choices for curves on which Goppa's construction and its variants may provide codes with good parameters are those with many rational points, especially maximal curves attaining the Hasse-Weil upper bound for the number of rational points compared with the genus of the curve. Unfortunately, maximal curves are difficult to find. The best known examples of maximal curves are the Hermitian curve, the Ree curve, the Suzuki curve, the GK curve and the GGS curve. In the present thesis, we construct and investigate algebraic geometry codes (shortly AG codes), their parameters and automorphism groups.

Intersections of Algebraic Curves and their link to the weight enumerators of Algebraic-Geometric Codes / Bonini, Matteo. - (2019), pp. 1-110.

Intersections of Algebraic Curves and their link to the weight enumerators of Algebraic-Geometric Codes

Bonini, Matteo
2019-01-01

Abstract

Channel coding is the branch of Information Theory which studies the noise that can occur in data transmitted through a channel. Algebraic Coding Theory is the part of Channel Coding which studies the possibility to detect and correct errors using algebraic and geometric techniques. Nowadays, the best performing linear codes are known to be mostly algebraic geometry codes, also named Goppa codes, which arise from an algebraic curve over a finite field, by the pioneering construction due to V. D. Goppa. The best choices for curves on which Goppa's construction and its variants may provide codes with good parameters are those with many rational points, especially maximal curves attaining the Hasse-Weil upper bound for the number of rational points compared with the genus of the curve. Unfortunately, maximal curves are difficult to find. The best known examples of maximal curves are the Hermitian curve, the Ree curve, the Suzuki curve, the GK curve and the GGS curve. In the present thesis, we construct and investigate algebraic geometry codes (shortly AG codes), their parameters and automorphism groups.
2019
XXXI
2018-2019
Matematica (29/10/12-)
Mathematics
Sala, Massimiliano
Rinaldo, Giancarlo
no
Inglese
Settore MAT/02 - Algebra
File in questo prodotto:
File Dimensione Formato  
Declaratoria.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.78 MB
Formato Adobe PDF
5.78 MB Adobe PDF   Visualizza/Apri
PhD_thesis_Bonini.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact