The thesis deals with the study of a natural extension of classical finite-dimensional time-optimal control problem to the space of positive Borel measures. This approach has two main motivations: to model real-life situations in which the knowledge of the initial state is only probabilistic, and to model the statistical distribution of a huge number of agents for applications in multi-agent systems. We deal with a deterministic dynamics and treat the problem first in a mass-preserving setting: we give a definition of generalized target, its properties, admissible trajectories and generalized minimum time function, we prove a Dynamic Programming Principle, attainability results, regularity results and an Hamilton-Jacobi-Bellman equation solved in a suitable viscosity sense by the generalized minimum time function, and finally we study the definition of an object intended to reflect the classical Lie bracket but in a measure-theoretic setting. We also treat a case with mass loss thought for modelling the situation in which we are interested in the study of an averaged cost functional and a strongly invariant target set. Also more general cost functionals are analysed which takes into account microscopical and macroscopical effects, and we prove sufficient conditions ensuring their lower semicontinuity and a dynamic programming principle in a general formulation.

Time-optimal control problems in the space of measures / Cavagnari, Giulia. - (2016), pp. 1-140.

Time-optimal control problems in the space of measures

Cavagnari, Giulia
2016-01-01

Abstract

The thesis deals with the study of a natural extension of classical finite-dimensional time-optimal control problem to the space of positive Borel measures. This approach has two main motivations: to model real-life situations in which the knowledge of the initial state is only probabilistic, and to model the statistical distribution of a huge number of agents for applications in multi-agent systems. We deal with a deterministic dynamics and treat the problem first in a mass-preserving setting: we give a definition of generalized target, its properties, admissible trajectories and generalized minimum time function, we prove a Dynamic Programming Principle, attainability results, regularity results and an Hamilton-Jacobi-Bellman equation solved in a suitable viscosity sense by the generalized minimum time function, and finally we study the definition of an object intended to reflect the classical Lie bracket but in a measure-theoretic setting. We also treat a case with mass loss thought for modelling the situation in which we are interested in the study of an averaged cost functional and a strongly invariant target set. Also more general cost functionals are analysed which takes into account microscopical and macroscopical effects, and we prove sufficient conditions ensuring their lower semicontinuity and a dynamic programming principle in a general formulation.
2016
XXIX
2015-2016
Matematica (29/10/12-)
Mathematics
Marigonda, Antonio
no
Inglese
Settore MAT/05 - Analisi Matematica
File in questo prodotto:
File Dimensione Formato  
PhDthesis_Cavagnari.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri
Declaratoria_Cavagnari.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 449.58 kB
Formato Adobe PDF
449.58 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact