Prostate cancer is a highly heterogeneous disease and its manifestations can vary from indolent localized tumor to widespread metastases. This heterogeneity is also observed at the molecular level both inter- and intra-patient. Intra-patient heterogeneity in the clinical setting of men with castration resistant prostate cancer (CRPC) might be informative in terms of treatment decision. Here I present analytical work on two approaches relevant to the characterization of intra-patient heterogeneity and applied to unpublished CRPC patients sequencing data. The first is based on the genome wide interrogation of multiple metastatic and primary tissue biopsies from single patients. I present genomic analyses to decipher the content of multiple tumor biopsies from CRPC patients and provide comparisons to highlight similarities and differences and to identify alternative patterns of aberrations. The second approach, alternative to tissue biopsies that might under-represent the genomic landscape of the patient’s disease, relies on liquid biopsies, a minimally invasive test that is also amenable to serial sampling. Liquid biopsies contain circulating cell free DNA (cfDNA) released from widespread tumor cells, potentially uncovering the full tumor landscape. By using next generation sequencing on cfDNA obtained from plasma, I developed strategies aimed at systematically tracking the reiterative process of genetic diversification leading to disease evolution and to detect genomic aberrations. I specifically focused on an ad hoc computational procedure (ABEMUS) to detect somatic point mutations that could emerge under treatment pressure and as drug resistance mechanism. The work I present is relevant to the context of precision oncology that exploits detailed patient-specific molecular information to diagnose and follow cancer progression with the ultimate goal of promptly guiding treatment decisions to improve clinical outcome with transdisciplinary strategies. The analytical work I developed can be applied to the study of any tumor type.

Quantitative analyses to study tumor clones dynamics and tumor heterogeneity / Casiraghi, Nicola. - (2017), pp. 1-84.

Quantitative analyses to study tumor clones dynamics and tumor heterogeneity

Casiraghi, Nicola
2017-01-01

Abstract

Prostate cancer is a highly heterogeneous disease and its manifestations can vary from indolent localized tumor to widespread metastases. This heterogeneity is also observed at the molecular level both inter- and intra-patient. Intra-patient heterogeneity in the clinical setting of men with castration resistant prostate cancer (CRPC) might be informative in terms of treatment decision. Here I present analytical work on two approaches relevant to the characterization of intra-patient heterogeneity and applied to unpublished CRPC patients sequencing data. The first is based on the genome wide interrogation of multiple metastatic and primary tissue biopsies from single patients. I present genomic analyses to decipher the content of multiple tumor biopsies from CRPC patients and provide comparisons to highlight similarities and differences and to identify alternative patterns of aberrations. The second approach, alternative to tissue biopsies that might under-represent the genomic landscape of the patient’s disease, relies on liquid biopsies, a minimally invasive test that is also amenable to serial sampling. Liquid biopsies contain circulating cell free DNA (cfDNA) released from widespread tumor cells, potentially uncovering the full tumor landscape. By using next generation sequencing on cfDNA obtained from plasma, I developed strategies aimed at systematically tracking the reiterative process of genetic diversification leading to disease evolution and to detect genomic aberrations. I specifically focused on an ad hoc computational procedure (ABEMUS) to detect somatic point mutations that could emerge under treatment pressure and as drug resistance mechanism. The work I present is relevant to the context of precision oncology that exploits detailed patient-specific molecular information to diagnose and follow cancer progression with the ultimate goal of promptly guiding treatment decisions to improve clinical outcome with transdisciplinary strategies. The analytical work I developed can be applied to the study of any tumor type.
2017
XXIX
2017-2018
CIBIO (29/10/12-)
Biomolecular Sciences
Demichelis , Francesca
Romanel, Alessandro
Attard, Gerhardt
no
Inglese
Settore BIO/11 - Biologia Molecolare
File in questo prodotto:
File Dimensione Formato  
Disclaimer_Casiraghi.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 81.93 kB
Formato Adobe PDF
81.93 kB Adobe PDF   Visualizza/Apri
PhD_Thesis_NicolaCasiraghi.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 9.98 MB
Formato Adobe PDF
9.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact