This work shows that it is possible to fabricate phosphate-based planar wave-guides activated by rare earth ions both by sol-gel and RF-sputtering techniques. The objective of this thesis has been to evaluate various methodologies for fab-rication Phosphorous-based planar waveguides. In this context sol-gel and RF-sputtering techniques for planar waveguides fabrication has been investigated. RF-process has been optimized. In case of sol-gel technique a further thermo-dynamical study is required. Each of technique has drawbacks, in sol-gel method the principal question is related to the kinetics of the reaction, since it is too fast, to better control of the reaction rates, and better adjustment of the technological films fabrication, which effects on spectroscopic properties of the waveguiding systems: losses, refractive index. In case of RF-sputtering is no-ticeable that the refractive index is low, and the losses are less than 0.2 dB/cm, however the multicomponent target material increase the complexity of the structure.
Fabrication and characterization of Phosphate-based planar waveguides activated by Er3+ ions / Vasilchenko, Iustyna. - (2016), pp. 1-201.
Fabrication and characterization of Phosphate-based planar waveguides activated by Er3+ ions
Vasilchenko, Iustyna
2016-01-01
Abstract
This work shows that it is possible to fabricate phosphate-based planar wave-guides activated by rare earth ions both by sol-gel and RF-sputtering techniques. The objective of this thesis has been to evaluate various methodologies for fab-rication Phosphorous-based planar waveguides. In this context sol-gel and RF-sputtering techniques for planar waveguides fabrication has been investigated. RF-process has been optimized. In case of sol-gel technique a further thermo-dynamical study is required. Each of technique has drawbacks, in sol-gel method the principal question is related to the kinetics of the reaction, since it is too fast, to better control of the reaction rates, and better adjustment of the technological films fabrication, which effects on spectroscopic properties of the waveguiding systems: losses, refractive index. In case of RF-sputtering is no-ticeable that the refractive index is low, and the losses are less than 0.2 dB/cm, however the multicomponent target material increase the complexity of the structure.File | Dimensione | Formato | |
---|---|---|---|
Vasilchenko_PhD_Thesis_2016.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.5 MB
Formato
Adobe PDF
|
2.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione