Automatic monitoring of environments, resouces and human processes are crucial and foundamental tasks to improve people's quality of life and to safeguard the natural environment. Today, new technologies give us the possibility to shape a greener and safer future. The more specialized is the kind of monitoring we want to achieve, more tight are the constraints in terms of reliability, low energy and maintenance-free autonomy. The challenge in case of tight energy constraints is to find new techniques to save as much power as possible or to retrieve it from the very same environment where the system operates, towards the realization of energy neutral embedded monitoring systems. Energy efficiency and battery autonomy of such devices are still the major problem impacting reliability and penetration of such systems in risk-related activities of our daily life. Energy management must not be optimized to the detriment of the quality of monitoring and sensors can not be operated without supply. In this thesis, I present different embedded system designs to bridge this gap, both from the hardware and software sides, considering specific resource constrained scenarios as case studies that have been used to develop solutions with much broader validity. Results achieved demonstrate that energy neutrality in monitoring under resource constrained conditions can be obtained without compromising efficiency and reliability of the outcomes.
Energy Neutral Design of Embedded Systems for Resource Constrained Monitoring Applications / Rossi, Maurizio. - (2016), pp. 1-109.
Energy Neutral Design of Embedded Systems for Resource Constrained Monitoring Applications
Rossi, Maurizio
2016-01-01
Abstract
Automatic monitoring of environments, resouces and human processes are crucial and foundamental tasks to improve people's quality of life and to safeguard the natural environment. Today, new technologies give us the possibility to shape a greener and safer future. The more specialized is the kind of monitoring we want to achieve, more tight are the constraints in terms of reliability, low energy and maintenance-free autonomy. The challenge in case of tight energy constraints is to find new techniques to save as much power as possible or to retrieve it from the very same environment where the system operates, towards the realization of energy neutral embedded monitoring systems. Energy efficiency and battery autonomy of such devices are still the major problem impacting reliability and penetration of such systems in risk-related activities of our daily life. Energy management must not be optimized to the detriment of the quality of monitoring and sensors can not be operated without supply. In this thesis, I present different embedded system designs to bridge this gap, both from the hardware and software sides, considering specific resource constrained scenarios as case studies that have been used to develop solutions with much broader validity. Results achieved demonstrate that energy neutrality in monitoring under resource constrained conditions can be obtained without compromising efficiency and reliability of the outcomes.File | Dimensione | Formato | |
---|---|---|---|
thesis_final_mR.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
46.06 MB
Formato
Adobe PDF
|
46.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione