Free and Open Source Software (FOSS) components are ubiquitous in both proprietary and open source applications. In this dissertation we discuss challenges that large software vendors face when they must integrate and maintain FOSS components into their software supply chain. Each time a vulnerability is disclosed in a FOSS component, a software vendor must decide whether to update the component, patch the application itself, or just do nothing as the vulnerability is not applicable to the deployed version that may be old enough to be not vulnerable. This is particularly challenging for enterprise software vendors that consume thousands of FOSS components, and offer more than a decade of support and security fixes for applications that include these components. First, we design a framework for performing security vulnerability experimentations. In particular, for testing known exploits for publicly disclosed vulnerabilities against different versions and software configurations. Second, we provide an automatic screening test for quickly identifying the versions of FOSS components likely affected by newly disclosed vulnerabilities: a novel method that scans across the entire repository of a FOSS component in a matter of minutes. We show that our screening test scales to large open source projects. Finally, for facilitating the global security maintenance of a large portfolio of FOSS components, we discuss various characteristics of FOSS components and their potential impact on the security maintenance effort, and empirically identify the key drivers.
Security assessment of open source third-parties applications / Dashevskyi, Stanislav. - (2017), pp. 1-125.
Security assessment of open source third-parties applications
Dashevskyi, Stanislav
2017-01-01
Abstract
Free and Open Source Software (FOSS) components are ubiquitous in both proprietary and open source applications. In this dissertation we discuss challenges that large software vendors face when they must integrate and maintain FOSS components into their software supply chain. Each time a vulnerability is disclosed in a FOSS component, a software vendor must decide whether to update the component, patch the application itself, or just do nothing as the vulnerability is not applicable to the deployed version that may be old enough to be not vulnerable. This is particularly challenging for enterprise software vendors that consume thousands of FOSS components, and offer more than a decade of support and security fixes for applications that include these components. First, we design a framework for performing security vulnerability experimentations. In particular, for testing known exploits for publicly disclosed vulnerabilities against different versions and software configurations. Second, we provide an automatic screening test for quickly identifying the versions of FOSS components likely affected by newly disclosed vulnerabilities: a novel method that scans across the entire repository of a FOSS component in a matter of minutes. We show that our screening test scales to large open source projects. Finally, for facilitating the global security maintenance of a large portfolio of FOSS components, we discuss various characteristics of FOSS components and their potential impact on the security maintenance effort, and empirically identify the key drivers.File | Dimensione | Formato | |
---|---|---|---|
disclaimer.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
thesis-dashevskyi-unitn.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione