Planar copper-containing anode supported Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) were produced by single step cosintering. The anode and the electrolyte were realized through water-based tape casting, the cathode being added by screen printing. A 5 mol% of Lithium oxide addition allowed reducing the Gadolinia-Doped Ceria (GDC)-based electrolyte sintering temperature below the copper oxide melting point. IT-SOFCs sintered at 950°C revealed a power density peak of 26 mW cm-2 at 650°C in H2, the maximum CuO amount within the anodic cermet being limited at 35 vol%. To improve the cell performance, the anode electrolyte thickness ratio was increased, in order to take advantage by the compressive tensile state induced by the supporting to the thinner layer, this leading to a further sintering temperature reduction and to avoid cracks due to the thermal expansion coefficient (TEC) mismatch existing between anode and electrolyte. IT-SOFCs at 900°C showed a power density peak of 200 mW cm-2 at 700°C in H2. Electronic impedance spectroscopy pointed out anode performances comparable with those obtained by using conventional Ni-based cermet electrodes. In biogas, 45 vol% CuO containing SOFC achieved a power density peak of 38 mW cm-2 at 700°C.

Planar copper containing anode-supported solid oxide fuel cells / De Marco, Vincenzo. - (2017), pp. 1-96.

Planar copper containing anode-supported solid oxide fuel cells

De Marco, Vincenzo
2017-01-01

Abstract

Planar copper-containing anode supported Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) were produced by single step cosintering. The anode and the electrolyte were realized through water-based tape casting, the cathode being added by screen printing. A 5 mol% of Lithium oxide addition allowed reducing the Gadolinia-Doped Ceria (GDC)-based electrolyte sintering temperature below the copper oxide melting point. IT-SOFCs sintered at 950°C revealed a power density peak of 26 mW cm-2 at 650°C in H2, the maximum CuO amount within the anodic cermet being limited at 35 vol%. To improve the cell performance, the anode electrolyte thickness ratio was increased, in order to take advantage by the compressive tensile state induced by the supporting to the thinner layer, this leading to a further sintering temperature reduction and to avoid cracks due to the thermal expansion coefficient (TEC) mismatch existing between anode and electrolyte. IT-SOFCs at 900°C showed a power density peak of 200 mW cm-2 at 700°C in H2. Electronic impedance spectroscopy pointed out anode performances comparable with those obtained by using conventional Ni-based cermet electrodes. In biogas, 45 vol% CuO containing SOFC achieved a power density peak of 38 mW cm-2 at 700°C.
2017
XXIX
2017-2018
Ingegneria industriale (29/10/12-)
Materials, Mechatronics and Systems Engineering
Sglavo, Vincenzo Maria
no
Inglese
Settore ING-IND/09 - Sistemi per l'Energia e L'Ambiente
File in questo prodotto:
File Dimensione Formato  
Thesis_Vincenzo_De_Marco_Planar_Copper_Containing_Anode_Supported_SOFCdocx.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.72 MB
Formato Adobe PDF
4.72 MB Adobe PDF   Visualizza/Apri
Disclaimer.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact