Object manipulation is central to our daily interactions with the environment. Failing to select, prepare or perform correct prehension movements results in dramatic limitations for the affected individual. Whereas we begin to have a better understanding of the neural mechanisms underlying the execution of object-directed movements, less is known about how exactly our brain makes the plan for action. Previous studies examining movement planning suggested that neuronal populations in parieto-frontal areas contain information about upcoming movements moments before they actually take place. However, such studies typically used experiments in which the participant was instructed about the movement to plan with visual or auditory cues, making it difficult to disentangle movement planning from the processing of cues and stimulus- response (S-R) mapping. In our first functional magnetic resonance imaging (fMRI) study (Study I), we compared an instructed condition with a free-choice condition that allowed participants to select which prehension movement to perform: a condition in which the task was not tied to specific external cues (i.e., no direct S-R mapping). Using multi-variate pattern analysis (MVPA), we found contralateral parietal and frontal regions containing abstract representations of planned movements that generalize across the way these movements were generated (internally vs externally). The majority of previous studies were based on delayed-movement tasks, which introduce brain responses unrelated to movement preparation. Consequently, whether these findings would generalize to immediate movements remained unclear. In our second fMRI study (Study II), we directly compared delayed and immediate reaching and grasping movements. Using time-resolved MVPA allowed us to reveal shared representations for delayed and non-delayed movement planning in human primary motor cortex and examine how movement representations unfolded throughout the different stages of planning and execution. Overall, our findings expand previous understanding of the regions implicated in movement planning and offer new insights into the dynamics of the human prehension system.

Neural representations of movement planning within the human prehension system / Ariani, Giacomo. - (2016), pp. 1-143.

Neural representations of movement planning within the human prehension system

Ariani, Giacomo
2016-01-01

Abstract

Object manipulation is central to our daily interactions with the environment. Failing to select, prepare or perform correct prehension movements results in dramatic limitations for the affected individual. Whereas we begin to have a better understanding of the neural mechanisms underlying the execution of object-directed movements, less is known about how exactly our brain makes the plan for action. Previous studies examining movement planning suggested that neuronal populations in parieto-frontal areas contain information about upcoming movements moments before they actually take place. However, such studies typically used experiments in which the participant was instructed about the movement to plan with visual or auditory cues, making it difficult to disentangle movement planning from the processing of cues and stimulus- response (S-R) mapping. In our first functional magnetic resonance imaging (fMRI) study (Study I), we compared an instructed condition with a free-choice condition that allowed participants to select which prehension movement to perform: a condition in which the task was not tied to specific external cues (i.e., no direct S-R mapping). Using multi-variate pattern analysis (MVPA), we found contralateral parietal and frontal regions containing abstract representations of planned movements that generalize across the way these movements were generated (internally vs externally). The majority of previous studies were based on delayed-movement tasks, which introduce brain responses unrelated to movement preparation. Consequently, whether these findings would generalize to immediate movements remained unclear. In our second fMRI study (Study II), we directly compared delayed and immediate reaching and grasping movements. Using time-resolved MVPA allowed us to reveal shared representations for delayed and non-delayed movement planning in human primary motor cortex and examine how movement representations unfolded throughout the different stages of planning and execution. Overall, our findings expand previous understanding of the regions implicated in movement planning and offer new insights into the dynamics of the human prehension system.
2016
XXVIII
2015-2016
CIMEC (29/10/12-)
Cognitive and Brain Sciences
Lingnau, Angelika
no
Inglese
Settore M-PSI/02 - Psicobiologia e Psicologia Fisiologica
Settore M-PSI/01 - Psicologia Generale
File in questo prodotto:
File Dimensione Formato  
Ariani_PhD_thesis_2016.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 74.52 MB
Formato Adobe PDF
74.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact