Multimedia data, being multidimensional by its nature, requires appropriate approaches for its organizing and sorting. The growing number of sensors for capturing the environmental conditions in the moment of media creation enriches data with context-awareness. This unveils enormous potential for eventcentred multimedia processing paradigm. The essence of this paradigm lies in using events as the primary means for multimedia integration, indexing and management. Events have the ability to semantically encode relationships of different informational modalities. These modalities can include, but are not limited to: time, space, involved agents and objects. As a consequence, media processing based on events facilitates information perception by humans. This, in turn, decreases the individual’s effort for annotation and organization processes. Moreover events can be used for reconstruction of missing data and for information enrichment. The spatio-temporal component of events is a key to contextual analysis. A variety of techniques have recently been presented to leverage contextual information for event-based analysis in multimedia. The content-based approach has demonstrated its weakness in the field of event analysis, especially for the event detection task. However content-based media analysis is important for object detection and recognition and can therefore play a role which is complementary to that of event-driven context recognition. The main contribution of the thesis lies in the investigation of a new eventbased paradigm for multimedia integration, indexing and management. In this dissertation we propose i) a novel model for event based multimedia representation, ii) a robust approach for mining events from multimedia and iii) exploitation of detected events for data reconstruction and knowledge enrichment.

Event Based Media Indexing / Tankoyeu, Ivan. - (2013), pp. 1-97.

Event Based Media Indexing

Tankoyeu, Ivan
2013-01-01

Abstract

Multimedia data, being multidimensional by its nature, requires appropriate approaches for its organizing and sorting. The growing number of sensors for capturing the environmental conditions in the moment of media creation enriches data with context-awareness. This unveils enormous potential for eventcentred multimedia processing paradigm. The essence of this paradigm lies in using events as the primary means for multimedia integration, indexing and management. Events have the ability to semantically encode relationships of different informational modalities. These modalities can include, but are not limited to: time, space, involved agents and objects. As a consequence, media processing based on events facilitates information perception by humans. This, in turn, decreases the individual’s effort for annotation and organization processes. Moreover events can be used for reconstruction of missing data and for information enrichment. The spatio-temporal component of events is a key to contextual analysis. A variety of techniques have recently been presented to leverage contextual information for event-based analysis in multimedia. The content-based approach has demonstrated its weakness in the field of event analysis, especially for the event detection task. However content-based media analysis is important for object detection and recognition and can therefore play a role which is complementary to that of event-driven context recognition. The main contribution of the thesis lies in the investigation of a new eventbased paradigm for multimedia integration, indexing and management. In this dissertation we propose i) a novel model for event based multimedia representation, ii) a robust approach for mining events from multimedia and iii) exploitation of detected events for data reconstruction and knowledge enrichment.
2013
XXIV
2012-2013
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Giunchiglia, Fausto
no
Inglese
Settore INF/01 - Informatica
File in questo prodotto:
File Dimensione Formato  
PhD-Thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.27 MB
Formato Adobe PDF
4.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact