Monte Carlo (MC) technique allows solving mathematical and physical problems of great complexity. One of the main topics that can be approached using the MC strategies concerns the study of the electron-solid interaction (transport MC). Transport MC allows predicting the behavior of charged particles traveling through the matter and it has been widely utilized in many applications. Among them, on the side of the chemical analysis of the surfaces and the interfaces of materials, let us mention Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Reflection Electron Energy Loss Spectroscopy (REELS), and Auger Electron Spectroscopy (AES). Concerning the simulation of the backscattering coefficient, it can be utilized for evaluating the chemical composition of the target, for measuring the thickness of thin surface films -- even in case of multi-layered structures, and so on. Regarding the secondary electron emission, MC simulation can be used for the study of image contrast in silicon p-n junctions, for line-scan calculations of resist materials with given geometrical cross-sections deposited on silicon substrates, etc. The aim of this work is to investigate some physical problems related to the transport of electrons in solid targets. The theoretical results will be validated through a comparison with the available experimental data.
Computer simulation of electron transport in solids with applications to materials analysis and characterization / Dapor, Maurizio. - (2013), pp. 1-217.
Computer simulation of electron transport in solids with applications to materials analysis and characterization
Dapor, Maurizio
2013-01-01
Abstract
Monte Carlo (MC) technique allows solving mathematical and physical problems of great complexity. One of the main topics that can be approached using the MC strategies concerns the study of the electron-solid interaction (transport MC). Transport MC allows predicting the behavior of charged particles traveling through the matter and it has been widely utilized in many applications. Among them, on the side of the chemical analysis of the surfaces and the interfaces of materials, let us mention Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Reflection Electron Energy Loss Spectroscopy (REELS), and Auger Electron Spectroscopy (AES). Concerning the simulation of the backscattering coefficient, it can be utilized for evaluating the chemical composition of the target, for measuring the thickness of thin surface films -- even in case of multi-layered structures, and so on. Regarding the secondary electron emission, MC simulation can be used for the study of image contrast in silicon p-n junctions, for line-scan calculations of resist materials with given geometrical cross-sections deposited on silicon substrates, etc. The aim of this work is to investigate some physical problems related to the transport of electrons in solid targets. The theoretical results will be validated through a comparison with the available experimental data.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_Dapor.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.42 MB
Formato
Adobe PDF
|
3.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione