In conventional silicon solar cell, the collection probability of light generated carries shows a drop in the high energy range 280-400nm. One of the methods to reduce this loss, is to implement nanometre sized semiconductors on top of a solar cell where high energy photons are absorbed and low energy photons are re-emitted. This effect, called luminescence down-shifter (LDS), modifies the incident solar spectrum producing an enhancement of the energy conversion efficiency of a cell. We investigate this innovative effect using silicon nanoparticles dispersed in a silicon dioxide matrix as active material. In particular, I proposed to model these structures using a transfer matrix approach to simulate its optical properties in combination with a 2D device simulator to estimate the electrical performance. Based on the optimized layer sequences, high efficiency cells were produced within the european project LIMA characterized by silicon quantum dots as active layer. Experimental results demonstrate the validity of this approach by showing an enhancement of the short circuit current density with up to 4%. In addition, a new configuration was proposed to improve the solar cell performances. Here the silicon nanoparticles are placed on a cover glass and not directly on the silicon cells. The aim of this study was to separate the silicon nanocrystals (Si-NCs) layer from the cell. In this way, the solar device is not affected by the Si-NCs layer during the fabrication process, i.e. the surface passivation quality of the cell remains unaffected after the application of the LDS layer. Using this approach, the downshifting contribution can be quantified separately from the passivation effect, as compared with the previous method based on the Si-NCs deposition directly on the solar devices. By suitable choice of the dielectric structures, an improvement in short circuit current of up 1% due to the LDS effect is demonstrated and simulated.
Silicon nanocrystals downshifting for photovoltaic applications / Sgrignuoli, Fabrizio. - (2013), pp. 1-139.
Silicon nanocrystals downshifting for photovoltaic applications
Sgrignuoli, Fabrizio
2013-01-01
Abstract
In conventional silicon solar cell, the collection probability of light generated carries shows a drop in the high energy range 280-400nm. One of the methods to reduce this loss, is to implement nanometre sized semiconductors on top of a solar cell where high energy photons are absorbed and low energy photons are re-emitted. This effect, called luminescence down-shifter (LDS), modifies the incident solar spectrum producing an enhancement of the energy conversion efficiency of a cell. We investigate this innovative effect using silicon nanoparticles dispersed in a silicon dioxide matrix as active material. In particular, I proposed to model these structures using a transfer matrix approach to simulate its optical properties in combination with a 2D device simulator to estimate the electrical performance. Based on the optimized layer sequences, high efficiency cells were produced within the european project LIMA characterized by silicon quantum dots as active layer. Experimental results demonstrate the validity of this approach by showing an enhancement of the short circuit current density with up to 4%. In addition, a new configuration was proposed to improve the solar cell performances. Here the silicon nanoparticles are placed on a cover glass and not directly on the silicon cells. The aim of this study was to separate the silicon nanocrystals (Si-NCs) layer from the cell. In this way, the solar device is not affected by the Si-NCs layer during the fabrication process, i.e. the surface passivation quality of the cell remains unaffected after the application of the LDS layer. Using this approach, the downshifting contribution can be quantified separately from the passivation effect, as compared with the previous method based on the Si-NCs deposition directly on the solar devices. By suitable choice of the dielectric structures, an improvement in short circuit current of up 1% due to the LDS effect is demonstrated and simulated.File | Dimensione | Formato | |
---|---|---|---|
Assemblaggio.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
104.31 MB
Formato
Adobe PDF
|
104.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione