Copper is widely used in many applications demanding high thermal and electrical conductivity, unfortunately its low hardness and wear resistance limit its performance. Work hardening has been proposed as a successful strengthening mechanism for the production of harder copper material, keeping the intrinsic conductivities. In this PhD thesis initially mechanical milling (MM) has been considered as suited strengthening technique due to the severe strain hardening and microstructural refinement induced by severe plastic deformation during the process. Then an enhanced hardening has been obtained by dispersion of a second harder phase in the copper matrix by mechanical alloying (MA), leading to the production of metal matrix composites (MMC). In this PhD thesis strain hardened and dispersion hardened copper materials have been sintered by Spark Plasma Sintering (SPS). Firstly the MM behaviour of Cu as function of milling time has been studied, it consists in three stages: flaking, welding and fracturing process. Since stearic acid has been added as process control agent (PCA), its decomposition has been analysed to limit the residual porosity in sintered samples. Several focused attempts have been made and the best results have been obtained by using a fine particle size, decreasing the heating rate and applying the SPS pressure once the decomposition of PCA was completed. However the presence of copper oxide and microstructure defects induced by the severe strain hardening hinder the densification. The residual porosity is responsible of a decrease of hardness in sintered sample and consequently to a limited wear resistance, to a decrease of thermal conductivity and to a loss of ductility. For the production of MMC a ceramic reinforcement (0.5wt% of TiB2) has been selected. Increasing milling time the dispersion of the hard phase among the matrix becomes more homogeneous and refinement of TiB2 is highlighted. The evolution of particle size and morphology during MA is similar to MM; also the densification mechanism during SPS are the same consisting in powder rearrangement, local and bulk deformation. The final density generally decreases by increasing milling time, by the way an increasing hardness confirms that strain hardening and dispersion hardening abundantly compensate the negative effect of porosity. Has been proved that the hard particles successfully enhanced sliding and abrasion wear meanwhile the copper matrix guarantees high thermal conductivity, satisfying the requirements. Therefore considering the characteristics of the initial copper powder, promising results have been obtained for MMCs showing an increased hardness combined with a high wear resistance and a thermal conductivity comparable to atomized copper and much higher than the commercial Cu-Be alloy. On the other side mechanical milled samples exhibited some limits, but they allowed a deep understanding of the MM process of copper.

Production of strengthened copper materials by Mechanical Milling-Mechanical Alloying and Spark Plasma Sintering / Cipolloni, Giulia. - (2016), pp. 1-164.

Production of strengthened copper materials by Mechanical Milling-Mechanical Alloying and Spark Plasma Sintering

Cipolloni, Giulia
2016-01-01

Abstract

Copper is widely used in many applications demanding high thermal and electrical conductivity, unfortunately its low hardness and wear resistance limit its performance. Work hardening has been proposed as a successful strengthening mechanism for the production of harder copper material, keeping the intrinsic conductivities. In this PhD thesis initially mechanical milling (MM) has been considered as suited strengthening technique due to the severe strain hardening and microstructural refinement induced by severe plastic deformation during the process. Then an enhanced hardening has been obtained by dispersion of a second harder phase in the copper matrix by mechanical alloying (MA), leading to the production of metal matrix composites (MMC). In this PhD thesis strain hardened and dispersion hardened copper materials have been sintered by Spark Plasma Sintering (SPS). Firstly the MM behaviour of Cu as function of milling time has been studied, it consists in three stages: flaking, welding and fracturing process. Since stearic acid has been added as process control agent (PCA), its decomposition has been analysed to limit the residual porosity in sintered samples. Several focused attempts have been made and the best results have been obtained by using a fine particle size, decreasing the heating rate and applying the SPS pressure once the decomposition of PCA was completed. However the presence of copper oxide and microstructure defects induced by the severe strain hardening hinder the densification. The residual porosity is responsible of a decrease of hardness in sintered sample and consequently to a limited wear resistance, to a decrease of thermal conductivity and to a loss of ductility. For the production of MMC a ceramic reinforcement (0.5wt% of TiB2) has been selected. Increasing milling time the dispersion of the hard phase among the matrix becomes more homogeneous and refinement of TiB2 is highlighted. The evolution of particle size and morphology during MA is similar to MM; also the densification mechanism during SPS are the same consisting in powder rearrangement, local and bulk deformation. The final density generally decreases by increasing milling time, by the way an increasing hardness confirms that strain hardening and dispersion hardening abundantly compensate the negative effect of porosity. Has been proved that the hard particles successfully enhanced sliding and abrasion wear meanwhile the copper matrix guarantees high thermal conductivity, satisfying the requirements. Therefore considering the characteristics of the initial copper powder, promising results have been obtained for MMCs showing an increased hardness combined with a high wear resistance and a thermal conductivity comparable to atomized copper and much higher than the commercial Cu-Be alloy. On the other side mechanical milled samples exhibited some limits, but they allowed a deep understanding of the MM process of copper.
2016
XXVIII
2017-2018
Ingegneria industriale (29/10/12-)
Materials Science and Engineering
Pellizzari, Massimo
Molinari, Alberto
no
Inglese
Settore ING-IND/21 - Metallurgia
File in questo prodotto:
File Dimensione Formato  
Disclaimer_Cipolloni.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri
PhD_thesis_Giulia_Cipolloni.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 11.17 MB
Formato Adobe PDF
11.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/368016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact