The ability of plant roots to penetrate soils is affected by several stimuli from the surrounding medium such as mechanical stresses and chemical changes. Therefore, roots have developed multiple responses to the several outer stimuli. Since plant roots have to face very complex problems to grow deeply into the ground, they are remarkable examples of problem-solving behaviour and adaptation to the outer constraints. The adaptation strategies of a natural root are not yet completely known and understood with exhaustive explanations. For this reason, mathematical models and experimental techniques applied to biological phenomena can perform a key role in translating the Nature adaptive solutions into engineering applications. The aim of this thesis is to provide further insights in understanding biological phenomena for the development of new technologies inspired by the adaptive ability of plant roots. Accordingly, both theoretical and experimental explanations to the adaptive behaviour of plant roots are proposed. The mathematical modelling is based on a modified version of the extended West, Brown and Enquist universal law, considering the root growth as an inclusion problem. The proposed equation has as a particular case a growth equation exploiting an approach similar to Lockhart taking into account the soil impedance. The influence of mechanical stresses and nutrient availability on the root growth are studied. The solutions of the analytical models are compared with experimental data collected in real and artificial soils. In addition, the theories and hypotheses of the root ability to grow in the apical region through nanoindentation, wettability, and photoelasticity are investigated. The first technique provided insights for the possible role and function at both different tissues levels and distances from the tip in the root movement and penetration during the growth. The investigation of root tissue properties revealed that the penetration and adaptation strategies adopted by plant roots could be enhanced by a combination of soft and stiff tissues. The second technique aimed to highlight the wettability of the apical zone and root hairs for the acquisition of water and nutrients. Finally, photoelastic experiments provided a non-invasive and in situ observation of plant roots growth and, by exploiting the fringe multiplication, a set up for the study of plant roots growing in edible gelatine is proposed.

Penetration Mechanics of Plant Roots and Related Inspired Robots / Calusi, Benedetta. - (2018), pp. 1-122.

Penetration Mechanics of Plant Roots and Related Inspired Robots

Calusi, Benedetta
2018-01-01

Abstract

The ability of plant roots to penetrate soils is affected by several stimuli from the surrounding medium such as mechanical stresses and chemical changes. Therefore, roots have developed multiple responses to the several outer stimuli. Since plant roots have to face very complex problems to grow deeply into the ground, they are remarkable examples of problem-solving behaviour and adaptation to the outer constraints. The adaptation strategies of a natural root are not yet completely known and understood with exhaustive explanations. For this reason, mathematical models and experimental techniques applied to biological phenomena can perform a key role in translating the Nature adaptive solutions into engineering applications. The aim of this thesis is to provide further insights in understanding biological phenomena for the development of new technologies inspired by the adaptive ability of plant roots. Accordingly, both theoretical and experimental explanations to the adaptive behaviour of plant roots are proposed. The mathematical modelling is based on a modified version of the extended West, Brown and Enquist universal law, considering the root growth as an inclusion problem. The proposed equation has as a particular case a growth equation exploiting an approach similar to Lockhart taking into account the soil impedance. The influence of mechanical stresses and nutrient availability on the root growth are studied. The solutions of the analytical models are compared with experimental data collected in real and artificial soils. In addition, the theories and hypotheses of the root ability to grow in the apical region through nanoindentation, wettability, and photoelasticity are investigated. The first technique provided insights for the possible role and function at both different tissues levels and distances from the tip in the root movement and penetration during the growth. The investigation of root tissue properties revealed that the penetration and adaptation strategies adopted by plant roots could be enhanced by a combination of soft and stiff tissues. The second technique aimed to highlight the wettability of the apical zone and root hairs for the acquisition of water and nutrients. Finally, photoelastic experiments provided a non-invasive and in situ observation of plant roots growth and, by exploiting the fringe multiplication, a set up for the study of plant roots growing in edible gelatine is proposed.
2018
XXX
2018-2019
Ingegneria civile, ambientale e mecc (29/10/12-)
Civil, Environmental and Mechanical Engineering
Pugno, Nicola
Mazzolai, Barbara
no
Inglese
Settore ICAR/08 - Scienza delle Costruzioni
File in questo prodotto:
File Dimensione Formato  
BenedettaCalusiPhDThesis.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.61 MB
Formato Adobe PDF
4.61 MB Adobe PDF   Visualizza/Apri
ModuloFirmato_BC.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/367957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact