The presence of noise and uncertainty in real scenarios makes machine learning a challenging task. Acquisition errors or missing values can lead to models that do not generalize well on new data. Under-fitting and over-fitting can occur because of feature redundancy in high-dimensional problems as well as data scarcity. In these contexts the learning task can show difficulties in extracting relevant and stable information from noisy features or from a limited set of samples with high variance. In some extreme cases, the presence of only aggregated data instead of individual samples prevents the use of instance-based learning. In these contexts, parametric models can be learned through simulations to take into account the inherent stochastic nature of the processes involved. This dissertation includes contributions to different learning problems characterized by noise and uncertainty. In particular, we propose i) a novel approach for robust feature selection based on the neighborhood entropy, ii) an approach based on ensembles for robust salary prediction in the IT job market, and iii) a parametric simulation-based approach for dynamic pricing and what-if analyses in hotel revenue management when only aggregated data are available.

Learning from noisy data through robust feature selection, ensembles and simulation-based optimization / Mariello, Andrea. - (2019), pp. 1-102.

Learning from noisy data through robust feature selection, ensembles and simulation-based optimization

Mariello, Andrea
2019-01-01

Abstract

The presence of noise and uncertainty in real scenarios makes machine learning a challenging task. Acquisition errors or missing values can lead to models that do not generalize well on new data. Under-fitting and over-fitting can occur because of feature redundancy in high-dimensional problems as well as data scarcity. In these contexts the learning task can show difficulties in extracting relevant and stable information from noisy features or from a limited set of samples with high variance. In some extreme cases, the presence of only aggregated data instead of individual samples prevents the use of instance-based learning. In these contexts, parametric models can be learned through simulations to take into account the inherent stochastic nature of the processes involved. This dissertation includes contributions to different learning problems characterized by noise and uncertainty. In particular, we propose i) a novel approach for robust feature selection based on the neighborhood entropy, ii) an approach based on ensembles for robust salary prediction in the IT job market, and iii) a parametric simulation-based approach for dynamic pricing and what-if analyses in hotel revenue management when only aggregated data are available.
2019
XXXI
2018-2019
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Battiti, Roberto
no
Inglese
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
File in questo prodotto:
File Dimensione Formato  
disclaimer.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 484.02 kB
Formato Adobe PDF
484.02 kB Adobe PDF   Visualizza/Apri
tesi_mariello.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/367772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact