Knowing how to exploit unlabeled data is a fundamental problem in machine learning. This dissertation provides contributions in different contexts, including semi-supervised learning, positive unlabeled learning and representation learning. In particular, we ask (i) whether is possible to learn a classifier in the context of limited data, (ii) whether is possible to scale existing models for positive unlabeled learning, and (iii) whether is possible to train a deep generative model with a single minimization problem.
Towards Uncovering the True Use of Unlabeled Data in Machine Learning / Sansone, Emanuele. - (2018), pp. 1-86.
Towards Uncovering the True Use of Unlabeled Data in Machine Learning
Sansone, Emanuele
2018-01-01
Abstract
Knowing how to exploit unlabeled data is a fundamental problem in machine learning. This dissertation provides contributions in different contexts, including semi-supervised learning, positive unlabeled learning and representation learning. In particular, we ask (i) whether is possible to learn a classifier in the context of limited data, (ii) whether is possible to scale existing models for positive unlabeled learning, and (iii) whether is possible to train a deep generative model with a single minimization problem.File | Dimensione | Formato | |
---|---|---|---|
PhD-Thesis.pdf
accesso aperto
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
8.27 MB
Formato
Adobe PDF
|
8.27 MB | Adobe PDF | Visualizza/Apri |
Disclaimer_Sansone.pdf
Solo gestori archivio
Tipologia:
Tesi di dottorato (Doctoral Thesis)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione