Knowing how to exploit unlabeled data is a fundamental problem in machine learning. This dissertation provides contributions in different contexts, including semi-supervised learning, positive unlabeled learning and representation learning. In particular, we ask (i) whether is possible to learn a classifier in the context of limited data, (ii) whether is possible to scale existing models for positive unlabeled learning, and (iii) whether is possible to train a deep generative model with a single minimization problem.

Towards Uncovering the True Use of Unlabeled Data in Machine Learning / Sansone, Emanuele. - (2018), pp. 1-86.

Towards Uncovering the True Use of Unlabeled Data in Machine Learning

Sansone, Emanuele
2018-01-01

Abstract

Knowing how to exploit unlabeled data is a fundamental problem in machine learning. This dissertation provides contributions in different contexts, including semi-supervised learning, positive unlabeled learning and representation learning. In particular, we ask (i) whether is possible to learn a classifier in the context of limited data, (ii) whether is possible to scale existing models for positive unlabeled learning, and (iii) whether is possible to train a deep generative model with a single minimization problem.
2018
XXIX
2017-2018
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
De Natale, Francesco
no
Inglese
Settore INF/01 - Informatica
Settore ING-INF/03 - Telecomunicazioni
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
File in questo prodotto:
File Dimensione Formato  
PhD-Thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.27 MB
Formato Adobe PDF
8.27 MB Adobe PDF Visualizza/Apri
Disclaimer_Sansone.pdf

Solo gestori archivio

Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/367731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact