When available, people use prior knowledge to predict dimensions of future events such as their location and semantic features. However, few studies have examined how multi-dimensional predictions are implemented, and mechanistic accounts are absent. Using eye tracking, we evaluated whether predictions of target-location and target-category interact during the earliest stages of orientation. We presented stochastic series so that across four conditions, participants could predict either the location of the next target-image, its semantic category, both dimensions, or neither. Participants observed images in absence of any task involving their semantic content. We modeled saccade latencies using ELATER, a rise-to-threshold model that accounts for accumulation rate (AR), variance of AR over trials, and variance of decision baseline. The main findings were: 1) AR scaled with the degree of surprise associated with a target's location; 2) predictability of semantic-category hindered saccade latencies, suggesting a bottleneck in implementing joint predictions; 3) saccades to targets that satisfied semantic expectations were associated with greater AR-variance than saccades to semantically-surprising images, consistent with a richer repertoire of early evaluative processes for semantically-expected images. Predictability of target-category also impacted gaze pre-positioning prior to target presentation. The results indicate a strong interaction between foreknowledge of object location and semantics during stimulus-guided saccades, and suggest statistical regularities in an input stream can also impact anticipatory, non-stimulus-guided processes.
Semantically predictable input streams impede gaze-orientation to surprising locations / Notaro, Giuseppe; Hasson, Uri. - In: CORTEX. - ISSN 1973-8102. - 139:(2021), pp. 222-239. [10.1016/j.cortex.2021.03.009]
Semantically predictable input streams impede gaze-orientation to surprising locations
Notaro, Giuseppe;Hasson, Uri
2021-01-01
Abstract
When available, people use prior knowledge to predict dimensions of future events such as their location and semantic features. However, few studies have examined how multi-dimensional predictions are implemented, and mechanistic accounts are absent. Using eye tracking, we evaluated whether predictions of target-location and target-category interact during the earliest stages of orientation. We presented stochastic series so that across four conditions, participants could predict either the location of the next target-image, its semantic category, both dimensions, or neither. Participants observed images in absence of any task involving their semantic content. We modeled saccade latencies using ELATER, a rise-to-threshold model that accounts for accumulation rate (AR), variance of AR over trials, and variance of decision baseline. The main findings were: 1) AR scaled with the degree of surprise associated with a target's location; 2) predictability of semantic-category hindered saccade latencies, suggesting a bottleneck in implementing joint predictions; 3) saccades to targets that satisfied semantic expectations were associated with greater AR-variance than saccades to semantically-surprising images, consistent with a richer repertoire of early evaluative processes for semantically-expected images. Predictability of target-category also impacted gaze pre-positioning prior to target presentation. The results indicate a strong interaction between foreknowledge of object location and semantics during stimulus-guided saccades, and suggest statistical regularities in an input stream can also impact anticipatory, non-stimulus-guided processes.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0010945221001040-main.pdf
Solo gestori archivio
Descrizione: MS text
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione