In the context of quantum-inspired machine learning, remarkable mathematical tools for solving classification problems are given by some methods of quantum state discrimination. In this respect, quantum-inspired classifiers based on nearest centroid and Helstrom discrimination have been efficiently implemented on classical computers. We present a local approach combining the kNN algorithm to some quantum-inspired classifiers.

Local Approach to Quantum-inspired Classification / Blanzieri, E.; Leporini, R.; Pastorello, D.. - In: INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS. - ISSN 1572-9575. - 62:1(2023). [10.1007/s10773-022-05263-y]

Local Approach to Quantum-inspired Classification

Blanzieri E.;Pastorello D.
2023-01-01

Abstract

In the context of quantum-inspired machine learning, remarkable mathematical tools for solving classification problems are given by some methods of quantum state discrimination. In this respect, quantum-inspired classifiers based on nearest centroid and Helstrom discrimination have been efficiently implemented on classical computers. We present a local approach combining the kNN algorithm to some quantum-inspired classifiers.
2023
1
Blanzieri, E.; Leporini, R.; Pastorello, D.
Local Approach to Quantum-inspired Classification / Blanzieri, E.; Leporini, R.; Pastorello, D.. - In: INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS. - ISSN 1572-9575. - 62:1(2023). [10.1007/s10773-022-05263-y]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/364618
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact