Mal de Debarquement Syndrome (MdDS) is a puzzling central vestibular disorder characterized by a long-lasting perception of oscillatory postural instability that may occur after sea travels or flights. We have postulated that MdDS originates from the post-disembarking persistence of an adaptive internal oscillator consisting of a loop system, involving the right and left vestibular nuclei, and the Purkinje cells of the right and left flocculonodular cerebellar cortex, connected by GABAergic and glutamatergic fibers. We have formulated here a mathematical model of the vestibulo-cerebellar loop system and carried out a computational analysis based on a set of differential equations describing the interactions among the loop elements and containing Hill functions that model input-output firing rates relationships among neurons. The analysis indicates that the system acquires a spontaneous and permanent oscillatory behavior for a decrease of threshold and an increase of sensitivity in neuronal input-output responses. These results suggest a role for synaptic plasticity in MdDS pathophysiology, thus reinforcing our previous hypothesis that MdDS may be the result of excessive synaptic plasticity acting on the vestibulo-cerebellar network during its entraining to an oscillatory environment. Hence, our study points to neuroendocrine pathways that lead to increased synaptic response as possible new therapeutic targets for the clinical treatment of the disorder.

Mal de Debarquement Syndrome explained by a vestibulo-cerebellar oscillator / Burlando, Bruno; Mucci, Viviana; Browne, Cherylea J.; Losacco, Serena; Indovina, Iole; Marinelli, Lucio; Blanchini, Franco; Giordano, Giulia. - In: MATHEMATICAL MEDICINE AND BIOLOGY. - ISSN 1477-8599. - 2023, 40:1(2023), pp. 96-110. [10.1093/imammb/dqac016]

Mal de Debarquement Syndrome explained by a vestibulo-cerebellar oscillator

Giordano, Giulia
Ultimo
2023-01-01

Abstract

Mal de Debarquement Syndrome (MdDS) is a puzzling central vestibular disorder characterized by a long-lasting perception of oscillatory postural instability that may occur after sea travels or flights. We have postulated that MdDS originates from the post-disembarking persistence of an adaptive internal oscillator consisting of a loop system, involving the right and left vestibular nuclei, and the Purkinje cells of the right and left flocculonodular cerebellar cortex, connected by GABAergic and glutamatergic fibers. We have formulated here a mathematical model of the vestibulo-cerebellar loop system and carried out a computational analysis based on a set of differential equations describing the interactions among the loop elements and containing Hill functions that model input-output firing rates relationships among neurons. The analysis indicates that the system acquires a spontaneous and permanent oscillatory behavior for a decrease of threshold and an increase of sensitivity in neuronal input-output responses. These results suggest a role for synaptic plasticity in MdDS pathophysiology, thus reinforcing our previous hypothesis that MdDS may be the result of excessive synaptic plasticity acting on the vestibulo-cerebellar network during its entraining to an oscillatory environment. Hence, our study points to neuroendocrine pathways that lead to increased synaptic response as possible new therapeutic targets for the clinical treatment of the disorder.
2023
1
Burlando, Bruno; Mucci, Viviana; Browne, Cherylea J.; Losacco, Serena; Indovina, Iole; Marinelli, Lucio; Blanchini, Franco; Giordano, Giulia
Mal de Debarquement Syndrome explained by a vestibulo-cerebellar oscillator / Burlando, Bruno; Mucci, Viviana; Browne, Cherylea J.; Losacco, Serena; Indovina, Iole; Marinelli, Lucio; Blanchini, Franco; Giordano, Giulia. - In: MATHEMATICAL MEDICINE AND BIOLOGY. - ISSN 1477-8599. - 2023, 40:1(2023), pp. 96-110. [10.1093/imammb/dqac016]
File in questo prodotto:
File Dimensione Formato  
dqac016.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/364263
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact