The problem of Optimal Phasor Measurement Units (PMU) Placement (OPP) in power systems is usually driven just by cost issues, whereas less attention is paid to measurement-related aspects. In particular, most OPP strategies rely on the minimization of a single objective function including system observability constraints, with no attention to state estimation performance. In fact, the observability constraints (either with or without redundancy due to contingencies) are not enough to ensure that the uncertainty associated with system state estimation is adequate for the intended purpose. For this reason, in this paper the OPP problem is addressed by minimizing two contrasting objective functions, i.e., the classic PMU deployment costs and the maximum system state estimation uncertainty. The aforementioned bi-objective OPP formulation is solved through a Non-dominated Sorting Genetic Algorithm II (NSGA-II). The results obtained applying the proposed approach to the IEEE 14-bus and 57-bus test systems show that several trade-off solutions can be found in different scenarios both with and without considering contingencies due to line or PMU faults. Among the Pareto-optimal solutions, the most interesting ones are probably those that ensure the highest normalized System Observability Redundancy Index (SORI) per PMU and those that minimize both estimation uncertainty and cost in all scenarios.

A Bi-objective Optimal PMU Placement Strategy Reconciling Costs and State Estimation Uncertainty / Andreoni, Riccardo; Bashian, Amir; Brunelli, Matteo; Macii, David. - ELETTRONICO. - (2022), pp. 1-6. (Intervento presentato al convegno AMPS 2022 tenutosi a Cagliari, Italy nel 28th-30th September 2022) [10.1109/AMPS55790.2022.9978909].

A Bi-objective Optimal PMU Placement Strategy Reconciling Costs and State Estimation Uncertainty

Andreoni, Riccardo
Primo
;
Bashian, Amir
Secondo
;
Brunelli, Matteo
Penultimo
;
Macii, David
Ultimo
2022-01-01

Abstract

The problem of Optimal Phasor Measurement Units (PMU) Placement (OPP) in power systems is usually driven just by cost issues, whereas less attention is paid to measurement-related aspects. In particular, most OPP strategies rely on the minimization of a single objective function including system observability constraints, with no attention to state estimation performance. In fact, the observability constraints (either with or without redundancy due to contingencies) are not enough to ensure that the uncertainty associated with system state estimation is adequate for the intended purpose. For this reason, in this paper the OPP problem is addressed by minimizing two contrasting objective functions, i.e., the classic PMU deployment costs and the maximum system state estimation uncertainty. The aforementioned bi-objective OPP formulation is solved through a Non-dominated Sorting Genetic Algorithm II (NSGA-II). The results obtained applying the proposed approach to the IEEE 14-bus and 57-bus test systems show that several trade-off solutions can be found in different scenarios both with and without considering contingencies due to line or PMU faults. Among the Pareto-optimal solutions, the most interesting ones are probably those that ensure the highest normalized System Observability Redundancy Index (SORI) per PMU and those that minimize both estimation uncertainty and cost in all scenarios.
2022
2022 IEEE 12th International Workshop on Applied Measurements for Power Systems
Piscataway, NJ
IEEE Publishing Company
978-1-6654-7034-6
978-1-6654-7035-3
Andreoni, Riccardo; Bashian, Amir; Brunelli, Matteo; Macii, David
A Bi-objective Optimal PMU Placement Strategy Reconciling Costs and State Estimation Uncertainty / Andreoni, Riccardo; Bashian, Amir; Brunelli, Matteo; Macii, David. - ELETTRONICO. - (2022), pp. 1-6. (Intervento presentato al convegno AMPS 2022 tenutosi a Cagliari, Italy nel 28th-30th September 2022) [10.1109/AMPS55790.2022.9978909].
File in questo prodotto:
File Dimensione Formato  
A_Bi-objective_Optimal_PMU_Placement_Strategy_Reconciling_Costs_and_State_Estimation_Uncertainty.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/364183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact