Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.

High-order finite element methods for cardiac monodomain simulations / Vincent, K. P.; Gonzales, M. J.; Gillette, A. K.; Villongco, C. T.; Pezzuto, S.; Omens, J. H.; Holst, M. J.; Mcculloch, A. D.. - In: FRONTIERS IN PHYSIOLOGY. - ISSN 1664-042X. - 6:Aug(2015). [10.3389/fphys.2015.00217]

High-order finite element methods for cardiac monodomain simulations

Pezzuto S.;
2015-01-01

Abstract

Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.
2015
Aug
Vincent, K. P.; Gonzales, M. J.; Gillette, A. K.; Villongco, C. T.; Pezzuto, S.; Omens, J. H.; Holst, M. J.; Mcculloch, A. D.
High-order finite element methods for cardiac monodomain simulations / Vincent, K. P.; Gonzales, M. J.; Gillette, A. K.; Villongco, C. T.; Pezzuto, S.; Omens, J. H.; Holst, M. J.; Mcculloch, A. D.. - In: FRONTIERS IN PHYSIOLOGY. - ISSN 1664-042X. - 6:Aug(2015). [10.3389/fphys.2015.00217]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/360548
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact