Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.(1)
The Simons Observatory: science goals and forecasts
Peter Ade;James Aguirre;Zeeshan Ahmed;Simone Aiola;Aamir Ali;David Alonso;Marcelo A. Alvarez;Kam Arnold;Peter Ashton;Jason Austermann;Humna Awan;Carlo Baccigalupi;Taylor Baildon;Darcy Barron;Nick Battaglia;Richard Battye;Eric Baxter;Andrew Bazarko;James A. Beall;Rachel Bean;Dominic Beck;Shawn Beckman;Benjamin Beringue;Federico Bianchini;Steven Boada;David Boettger;J. Richard Bond;Julian Borrill;Michael L. Brown;Sarah Marie Bruno;Sean Bryan;Erminia Calabrese;Victoria Calafut;Paolo Calisse;Julien Carron;Anthony Challinor;Grace Chesmore;Yuji Chinone;Jens Chluba;Hsiao-Mei Sherry Cho;Steve Choi;Gabriele Coppi;Nicholas F. Cothard;Kevin Coughlin;Devin Crichton;Kevin D. Crowley;Kevin T. Crowley;Ari Cukierman;John M. D'Ewart;Rolando Dünner;Tijmen de Haan;Mark Devlin;Simon Dicker;Joy Didier;Matt Dobbs;Bradley Dober;Cody J. Duell;Shannon Duff;Adri Duivenvoorden;Jo Dunkley;John Dusatko;Josquin Errard;Giulio Fabbian;Stephen Feeney;Simone Ferraro;Pedro Fluxà;Katherine Freese;Josef C. Frisch;Andrei Frolov;George Fuller;Brittany Fuzia;Nicholas Galitzki;Patricio A. Gallardo;Jose Tomas Galvez Ghersi;Jiansong Gao;Eric Gawiser;Martina Gerbino;Vera Gluscevic;Neil Goeckner-Wald;Joseph Golec;Sam Gordon;Megan Gralla;Daniel Green;Arpi Grigorian;John Groh;Chris Groppi;Yilun Guan;Jon E. Gudmundsson;Dongwon Han;Peter Hargrave;Masaya Hasegawa;Matthew Hasselfield;Makoto Hattori;Victor Haynes;Masashi Hazumi;Yizhou He;Erin Healy;Shawn W. Henderson;Carlos Hervias-Caimapo;Charles A. Hill;J. Colin Hill;Gene Hilton;Matt Hilton;Adam D. Hincks;Gary Hinshaw;Renée Hložek;Shirley Ho;Shuay-Pwu Patty Ho;Logan Howe;Zhiqi Huang;Johannes Hubmayr;Kevin Huffenberger;John P. Hughes;Anna Ijjas;Margaret Ikape;Kent Irwin;Andrew H. Jaffe;Bhuvnesh Jain;Oliver Jeong;Daisuke Kaneko;Ethan D. Karpel;Nobuhiko Katayama;Brian Keating;Sarah S. Kernasovskiy;Reijo Keskitalo;Theodore Kisner;Kenji Kiuchi;Jeff Klein;Kenda Knowles;Brian Koopman;Arthur Kosowsky;Nicoletta Krachmalnicoff;Stephen E. Kuenstner;Chao-Lin Kuo;Akito Kusaka;Jacob Lashner;Adrian Lee;Eunseong Lee;David Leon;Jason S. -Y. Leung;Antony Lewis;Yaqiong Li;Zack Li;Michele Limon;Eric Linder;Carlos Lopez-Caraballo;Thibaut Louis;Lindsay Lowry;Marius Lungu;Mathew Madhavacheril;Daisy Mak;Felipe Maldonado;Hamdi Mani;Ben Mates;Frederick Matsuda;Loïc Maurin;Phil Mauskopf;Andrew May;Nialh McCallum;Chris McKenney;Jeff McMahon;P. Daniel Meerburg;Joel Meyers;Amber Miller;Mark Mirmelstein;Kavilan Moodley;Moritz Munchmeyer;Charles Munson;Sigurd Naess;Federico Nati;Martin Navaroli;Laura Newburgh;Ho Nam Nguyen;Michael Niemack;Haruki Nishino;John Orlowski-Scherer;Lyman Page;Bruce Partridge;Julien Peloton;Francesca Perrotta;Lucio Piccirillo;Giampaolo Pisano;Davide Poletti;Roberto Puddu;Giuseppe Puglisi;Chris Raum;Christian L. Reichardt;Mathieu Remazeilles;Yoel Rephaeli;Dominik Riechers;Felipe Rojas;Anirban Roy;Sharon Sadeh;Yuki Sakurai;Maria Salatino;Mayuri Sathyanarayana Rao;Emmanuel Schaan;Marcel Schmittfull;Neelima Sehgal;Joseph Seibert;Uros Seljak;Blake Sherwin;Meir Shimon;Carlos Sierra;Jonathan Sievers;Precious Sikhosana;Maximiliano Silva-Feaver;Sara M. Simon;Adrian Sinclair;Praween Siritanasak;Kendrick Smith;Stephen R. Smith;David Spergel;Suzanne T. Staggs;George Stein;Jason R. Stevens;Radek Stompor;Aritoki Suzuki;Osamu Tajima;Satoru Takakura;Grant Teply;Daniel B. Thomas;Ben Thorne;Robert Thornton;Hy Trac;Calvin Tsai;Carole Tucker;Joel Ullom;Sunny Vagnozzi;Alexander van Engelen;Jeff Van Lanen;Daniel D. Van Winkle;Eve M. Vavagiakis;Clara Vergès;Michael Vissers;Kasey Wagoner;Samantha Walker;Jon Ward;Ben Westbrook;Nathan Whitehorn;Jason Williams;Joel Williams;Edward J. Wollack;Zhilei Xu;Byeonghee Yu;Cyndia Yu;Fernando Zago;Hezi Zhang;Ningfeng Zhu
2019-01-01
Abstract
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.(1)
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/360125
Citazioni
ND
670
685
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.