This work introduces the Active Learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multi-objective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learnt from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art Estimation of Distribution Algorithms and widely-known genetic techniques.

Active learning of Pareto fronts / Passerini, Andrea; Battiti, Roberto; Campigotto, Paolo. - ELETTRONICO. - (2012), pp. 1-27.

Active learning of Pareto fronts

Passerini, Andrea
Secondo
;
Battiti, Roberto
Ultimo
;
Campigotto, Paolo
Primo
2012-01-01

Abstract

This work introduces the Active Learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multi-objective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learnt from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art Estimation of Distribution Algorithms and widely-known genetic techniques.
2012
Trento
Università degli Studi di Trento, Dipartimento di Ingegneria e Scienza dell'Informazione
Active learning of Pareto fronts / Passerini, Andrea; Battiti, Roberto; Campigotto, Paolo. - ELETTRONICO. - (2012), pp. 1-27.
Passerini, Andrea; Battiti, Roberto; Campigotto, Paolo
File in questo prodotto:
File Dimensione Formato  
ALP_tech_rep_with_cover.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/359395
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact