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Active learning of Pareto fronts

Paolo Campigotto, Andrea Passerini, and Roberto Battiti

Abstract—This work introduces the Active Learning of Pareto SOP can be solved by applying common methods and widely
fronts (ALP) algorithm, a novel approach to recover the Pareto developed theory for single-objective optimization. Hoes
front of a multi-objective optimization problem. ALP casts the scalarization-based methods are usually sensitive torthpes

identification of the Pareto front into a supervised machine tinuity of the Pareto front I31. F |
learning task. This approach enables an analytical model of the or continuity of the Pareto front [3]. For example, non-oexv

Pareto front to be built. The computational effort in generating Parts of the Pareto front cannot be recovered by optimizing
the supervised information is reduced by an active learning convex combinations of the objective functions.

strategy. In particular, the model is learnt from a set of infor- Rather than relying on scalarization techniques, curraté s
mative training objective vectors. The training objective vecbrs ot the art approaches for MOPs are represented by the Evolu-

are approximated Pareto-optimal vectors obtained by solving .. AR L .
different scalarized problem instances. The experimental results tionary Multi-objective optimization algorithms (EMOA$3],

show that ALP achieves an accurate Pareto front approximation Which are less susceptible to the shape of the Pareto front,
with a lower computational effort than state-of-the-art Estimation  handling, e.g., discontinuous or concave shapes. EMOAs are
of Distribution Algorithms and widely-known genetic techniques. heuristic techniques generating an approximation of thelevh
PF in a single run and without using any derivative (i.e.dgra
Index Terms—Multi-objective optimization, Gaussian process ent) information. The approximation is obtained by repeiste

regression, active learning, uncertainty sampling. improving a set of candidate solutions in the decision space
(referred to as “population” within the Evolutionary mettap)
. INTRODUCTION until their images in the objective space have converged to

EAL-world optimization tasks usually require the Opihe PF. However, neither the convergence to the PF, nor, in

R timization of several conflicting objectives: a solutiorfase of convergence, a uniform distribution of the popatati
simultaneously optimizing all of them does not exist. Ther@®Ver the PF are guaranteed. Furthermore, the performance is
fore, the solution to the multi-objective optimization pfem typically sensitive to the setting of the algorithm paraenst
(MOP) becomes the quantitative identification of tradesoff€-g-, population size, number of iterations, genetic ajpes
between the multiple objectives. The trade-offs between tRarameters), whose tuning depends on the specific problem
competing objectives are captured by tRareto-optimalso- instance being solved.
lutions, for which any single objective cannot be improved The Active Learning of Pareto fronts algorithm introduced
without compromising at least one of the others. in this paper is different from existing EMOAs. Because the

The set of the Pareto-optimal solutions in the decisionespa@F has infinite cardinality in the case of continuous MOPs,
(Pareto set or PS) and of the corresponding objective &eitor ALP generates amanalytical representatiorof the PF, rather
the objective space (Pareto front or PF) typically have gdarthan an approximation by a finite and preset number of points.
or even infinite cardinality, as it is the case for continuou8n analytical representation of the entire Pareto front may
problems. In these cases, the typical solution consistsnof ggnificantly improve the decision making process, palidy
approximation of the Pareto set (Pareto front) by a finit¢hen the preferences of the Decision Maker (DM) cannot be
number of representative solutions (objective vectorg)e TStateda priori. The compact analytical representation of the
better the approximation of the Pareto front, the better tifd- offers to the DM the possibility of visually inspectingeth
choice of the favorite compromise between the objectivas tHront, and of focusing on the preferred regions and selgctin
is offered to the decision maker. the favorite solutionz, as the desired compromise between

The traditional approach to obtain a finite set of Paretde different objectives. ALP can then identify the solntia
optimal solutions (and the corresponding images in the P decision space correspondingzoWith a large number
involves the sequential generation and solution of scaddri Of objectives, dimensionality reduction techniques [Synbe
instances of the MOP. Scalarization [1], [2] consists ofsra €mployed to enable the investigation of the learnt anajtic
forming the origina| MOP into 8ing|e.objective Optimization PF representation in a three or two dimensional visuatinati
problem (SOP). The generated SOP is a parametric combiThe ALP algorithm generates the analytical PF represen-
nation of the multiple objectives of the original MOP into dation by learning a model of the PF from teaining set
single objective. This combination may involve the gerierat Of approximated Pareto-optimal vectors, which are obthine
of additional constraints not included in the original MORY solving different SOP instances. In order to minimize the
Different Pareto-optimal solutions can be obtained by apprcomputational effort (measured as number of evaluations of

priately varying the scalarization parameters. The geedrathe MOP objective functions), informative training objeet
vectors are selected by applying active learning prinsiple

P. Campigotto, A. Passerini and R. Batiiti are with the De¢aAl) In particular, the learning stage is accomplished by
partment of Information Engineering and Computer Science,vesni

sity of Trento, Via Sommarive 14, 1-38123 Povo, TN, ltaly. E-mai Gaussian proces; (GP) regres;ion [6]’ asit provides aicéexp!
{campigotto,passerini,batf@disi.unitn.it. measure of predictive uncertainty that can be used to guide



the selection of the training examples (active learning kf m objective functions which need to be jointly minimized.
uncertainty sampling [7]). The adoption of the AL paradign®bjective vectors are images of decision vectors and can be
also favors theanytimeproperty: when increasing the numbemvritten asz = f(x) = {f1(X), ..., fm(X)}. Problem (1) is ill-
of function evaluations, the accuracy of the analytical Pposed whenever objective functions are conflicting, a 8dna
representation improves. Furthermore, the GP methodsoffevhich typically occurs in real-world applications. In tlees
a natural termination criterion for ALP: when tiformation cases, an objective vector is considered optimal if none of
gain obtained by including any additional training example igs components can be improved without worsening at least
negligible, the algorithm stops. The training objectivetees one of the others. An objective vectaris said todominate
are generated by solving different instances of a scalhrizg, denoted ag > Z,if z, < z;, for all £ and there exists at
optimization problem. ALP does not require any derivativieast oneh such thatz, < z;. A point x is Pareto-optimal if
information and is a generic framework: neither the Mlthere is no othex’ € Q such thatf(x’) dominatesf(x). The
method learning the PF model, nor the AL principles and theet of Pareto-optimal solutions is call@dreto set(PS). The
optimization techniques for solving SOPs instances arigdin corresponding set of Pareto-optimal objective vectoraied
to the ones discussed in this paper. Pareto front (PF). Theideal objective vector represents the

Let us note that there are two possible connections betwdmst value of each objective. It is generally infeasible &nd
machine learning and multi-objective optimization. Thestfir obtained by separately minimizing each objective funciion
connection arises because machine learning problemsicontae feasible region, i.e;/? = minycq fx(x). Analogously,
challenging multi-objective optimization tasks, from geal the worst objective vector contains the maximum possible
cases like the trade-off between intra-cluster similagtyd value of each objective over the entire search space. Anothe
inter-cluster dissimilarity in clustering problems, toesffic notable vector in the objective space is Madir point, whose
cases such as, reinforcement learning problems with nfeiltifk-th component is the maximum value of thettk-objective
conflicting reward functions [8], [9]. The second connegtfio among all the Pareto-optimal vectors) = maxyxco- fix(x),
implemented by our work, goes in the opposite direction: wthere Q* C ) is the set of the Pareto-optimal solutions.
uses learning techniques from the machine learning comnithe ideal and Nadir points define the range of values that
nity to solve the general multi-objective optimization plem. the Pareto-optimal objective vectors may attain.

The next Section describes the problem settings assumed
in this work. Details of the ALP algorithm are provided
in Sec. lll, while Sec. IV describes the Gaussian process
regression technique used to model the Pareto front. Reelas Assumptions
work is discussed in the following section. An experimen-
tal comparison between ALP and state-of-the-art EMOAs {4nder mild smoothness conditions, the Pareto front of centi
reported in Sec. VI, while the ability of ALP in learning dis-Uous MOPs is arim — 1)-dimensional piecewise-continuous
connected Pareto fronts is evaluated in Sec. VIl and Set¢. vianifold [1], [10], [11], with m being the number of objec-
The experiments in Sec. IX validate the choice of the actijes. The dominance relation defined in the objective space
learning strategy based on the predictive uncertainty ef tEnables a further characterization of the PF by expressing
GP regression model. Finally, possible generalizationsld? an arbitrary objectivez; (dependent function variable) as a

and interesting directions for future research are dismuigs function of the remaining objectives (independent function
Sec. X. variables):z; = g(z;). Without loss of generality the i
objective of a m-objective problem is considered the depand
I|. PROBLEM SETTINGS objgcti\{e, i.e.,zmlz g(zr), with z; including objectives
zi,t=1,...,m—1.
Th_e A.LP algqri'Fhm_ introduces a new strategy to tackl_e multi- i work, we focus on bi-objective optimization prob-
objective optimization problems (MOPS). In this Sectiore w

-lems, where the PF is characterized by the continuous fumcti

give the formal definition of the MOP, specifying the terml—ZQ — g(z1). The only assumption of ALP is the knowledge of

nology used throughout the paper, and ‘?'eﬁ”e the properfties[ﬁ)e domain ofg. When the PF is connected, the domaingof
the Pareto front which our algorithm relies on. is completely specified by a lower and an upper bound point.
While the lower bound can be easily obtained by computing
A. Multi-objective optimization problem the valuez{? of the ideal point, the upper bound can be
A multi-objective optimization problem (MOP) is formulate SPecified by the decision maker herself, which is often aware
as: of a critical threshold defining the set of interesting valfer
a given objective. When the decision maker cannot provide
the desired information, the upper bound defining the domain
min  f(x) = {f1(x),..., fm(x)} (1) of gis represented by the valug’ of the Nadir point, which,
x in the case of bi-objective problems, can be computed gxactl
(see Fig. 1). In fact, in the case of bi-objective optimiaati
wherex € R™ is a vector ofn decision variables§2 ¢ R™ problems, each component of the Nadir point is obtained from
is the feasible regionand is typically specified as a set ofthe Pareto-optimal objective vector containing the idedu®
constraints on the decision variablés2 — ® c R™ is made for the other component. Therefore, the componghtcan be

subject to x €}



determined by solving the following program: Given the training sef’, the modelj approximating the PF
is learnt by applyingsaussian processegression (GPR). This

N _ .

o= hix) (@) choice is motivated by the ability of GP learners in quaitidy

subject to fo(x) = 24P prediction uncertainties, which enables a suitable aaptio
e of the uncertainty sampling principle. GP learners provide

Gaussian distribution (1.(z1), o(zr)) of the values predicted
For MOPs with more than two objectives or bi-objective MOP®I any single test inpuz;. The mearu(z;) of the predictive
with a disconnected PF, the domain of functigncannot distribution can be interpreted as the predictignof the GPR
be defined by just a couple of (user supplied) points. odelg when applied on test input;, while the variance of
Sec. VII, our approach is generalized to bi-objective MOFBe distribution quantifies the confidence of the model about
with disconnected Pareto fronts, where the a priori knoggedthe prediction. Large variance means that the test sample is
of the domain ofg is an impractical assumption. Finally,not represented by the model learnt on the current training
Sec. X outlines a possible generalization of ALP to tack@xamples. Therefore, the poigy in S maximizing o(z)

MOPs with a number of objectives larger than two. is used to generate anformative training example for the
current modelj. A detailed description of GPR including all

aspects relevant to our algorithm is reported in Section IV.
3) Supervised information generation.Supervised infor-

Our approach casts the MOP intongachine learning task mation consists of the value of the dependent objectjydor

given a training set of approximated Pareto-optimal vetora given input feature vectdr. The couplgz;, 2,,,) constitutes

the PF is identified by learning a model explaining the tragni a training example. The valug,, is obtained by solving the

data. In particular, as the PF is an (unknown) continuogsliiowing mathematical problem:

function z,,, = ¢g(z;), the learning task is naturally formulated

as aregressionproblem in the objective space. In particular, min fm (x) 3)

the dependent objective,, of function g and the independent e

Ill. THE ALP ALGORITHM

objectivesz; constitute the target variable and the input feature subject to

vector of the regression task, respectively. Let us asshiate t fix)=2%+¢,j=1....,m—1,
both a set of training vectors and a supervisor, which pewid le;| <1072

the valuez,, for each of the vectors, are available. The target xe0

of the learning task is a modglwhich, given a new vectat;,
returns the estimated valdg, of the target variable,,. Model where Q2 C R™ identifies the feasible region of the MOP.
g provides the analytical representation of the PF returned bet x be the solution of problem (3). Then,, = f..(%).
ALP. The objective vectot = {z,,%,,} is Pareto-optimal. Slack
Given an initial setT' of training examples in the form variablese; in problem (3) relax the equality constraints
(z1, zm) (initialization phasg, ALP iteratively learng; (refine-  f;(x) = 2;. Equality constraints relaxation is introduced to
ment phasg Each refinement iteration consists of training theolve instances of problem (3) suffering from the preserice o
modelg on the current training s&t and, based on the learntlocal minima. Wherj¢;| > 0 for at least one value of indej
model, selecting a new training vectay. The new training the new training input is a poird; in the neighborhood of;.
example(z,, 2,,), wherez,, is the supervised information, isAs positionz; is located in the region where the predictive
included inT'. The update of the training sét completes the uncertainty is higher, it represents an informative quesynp

refinement iteration. The tolerance value df0—2 in problem (3) is in general related
The pseudo-code of ALP is in Fig 2. In the following, weto the input range and to the objective functions, the vafue o
provide the details of the algorithm. 102 is adequate for all benchmark problems (and the results

1) Initialization phase. The initial training setl’ is gen- are very robust with respect to this choice).
erated by selecting vectors uniformly at random within the 4) Dominance-based filtering.When the solution of prob-
feature spacé of the regression task, spanned by the- 1 lem (3) is anapproximationx of the Pareto-optimal solution
independent objectiveg;. Supervised information for eachx, anoisytraining exampleézy, z,,,), with z,,, = f,,.(X) > 2.,
selected vector is generated. may be generated. Therefore, when new training examples

2) Refinement phase (active learning)Training examples are included in the training sét, a “dominance check” is
generation is expensive, as computing the supervisednizfor performed to detect and remove training examples which are
tion involves the evaluation of the objective functidhef the dominated by the new training examples.
MOP. In order to minimize the number of training examples 5) Termination criterion. The ALP approach is a general
without affecting the accuracy of the learnt model, tragninframework to solve MOPs, enabling different termination
inputs are selected by thencertainty samplingrinciple [7]. criteria. A simple one is provided by the AL paradigm. When
At each refinement iteration, the new training input is thtéhe information gain obtained fromany additional training
feature vectorz; in S whose prediction the current modelexample is negligible, the accuracy of the learnt PF model
is most uncertain The couple(zy, 2,,), with %, being the is not expected to improve in a significant manner, and
supervised regression score, is consideredrtbst informative the algorithm stops. The information gain is estimated by
training data for the current model. the uncertainty of the model about its predictions for the



Nadir point

Ideal point
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Fig. 1. Bi-objective minimization problem. The gray-shadegsadenotes the feasible objective space, with the PF bejigtdd by the bold-marked curve.
The ideal and Nadir points bounding the PF are highlighted.

1. procedure ALP

2 input: multi-objective optimization problem

3 output: analytical PF representation

4. Let S the feature space of the regression task

5 /* Initialization phase */

6. Selectwv training inputsz; uniformly at random inS

7 Generate regression scotg for each training input by solving instances of problem (3 Supervision */
8. Initialize training setT” by thev instancedz;, z,,)

9 Remove dominated training examples frdm/* Dominance-based filtering */

10. /* Refinement phase */

11, do

12 Train GP regression model on sEt/* Modeling */

13 Select most informative training inpat /* Active learning */

1. Generate regression scotg for z; by solving problem (3)* Supervision */
1. Include training exampléz;, 2,,) in T

1. Remove dominated training examples fr@m™* Dominance-based filtering */
7. until (termination criterion)

18, return learnt GP model* Analytical PF representation */

Fig. 2. Pseudo-code for the ALP algorithm generating thdyéinal PF representation by iteratively refining the lda@P model.

candidate training examples. Alternative terminatiortecida objective functions, which is instead needed by the geiverat
for the iterative learning process include a limit on the bem of the training scores (Eq. (3)). Therefore, the computetio

of refinement iterations or an upper bound on the number afst of ALP corresponds to the effort spent in generating the
evaluations of the MOP objectives (limit on the computadion supervised information.

effort).

6) Computational complexity. The computational com- IV. GAUSSIAN PROCESS REGRESSION

plexity of ALP 3is dominated by the GP training, whichrpe ALP algorithm learns an analytical approximating of
t_akgs timeO(|T|?) (s.e(.a Sec. 1V). However, because of thg o pg by applyingGaussian processegression (GPR) [6],

limited number of training examples that can be used by AL5 This choice is motivated by the ability of GP learners
to efficiently recover the PF, the GP training is completefh nrovide an explicit uncertainty model for the individual

in a negligible amount of time. Furthermore, in real-worlyegictions, therefore enabling a suitable applicationthef
MOPs, the run-time bottleneck is typically representedkm/tuncertaimy sampling principle [7]: an input on which the

evaluation of the objective functions. The fitness comporat ¢ rrent learner has maximum uncertainty is selected as new
may involve, for example, time-consuming experiments aining example.

simulations. In some real-world cases, the analytical ©rm | s section we describe the regression based on Gaussian
lation of the fitness surface may even not exist, e.g., WheQ,cesses. First, we show how the traditional regressisk ta
one objective is the optimization of quantitative judgmeents tackied by using Gaussian processes and elucidate the

provided by the decision maker. components (i.e., the mean and covariance functions) deede
Training the GP does not require the evaluation of thte completely specify a GP regression model. SubsectioB IV-



details the Gaussian noise model assumption and describeA Gaussian process is completely specified by the mean
how to make predictions from a trained Gaussian proceggx) and the covariance(x;, x;) functions. The mean func-
The training (i.e., learning) of a GP model is explained ition is usually set to zero (bias and offsets can be sub-
Subsection IV-C. It consists of selecting a functional fdon tracted from the data without loosing generality), therefo
the mean and the covariance functions and of tuning théire definition of the GP reduces to the choice of the suitable
parameters, together with the Gaussian noise variancet toc@variance function, which measures the similarity betwee
the current data. In particular, we focus on model selectidmputs x by computing the covariance among the function
by likelihood maximization, discussing also its compwiatl variablesg associated with the inputs. The covariance matrix
complexity. Finally, we show how GPR enables a sound in Eqg. (4) is calculated from the covariance function:
application of the uncertainty sampling principle. A summyna K, ; = cov(g;, ;) = c(x;, X;).

of the GPR features concludes the section. A sample functiorof a Gaussian process is a single real-
ization of each of its random variables. The joint Gaussian
distribution of the random variables defining a Gaussian pro
B ) ] o cess induces a Gaussian distribution over sample functions
The traditional regression task consists of estimatingtenta The covariance function defines the properties of the fonsti
function g(x) from a noisy training datas&t = {(xi,4i).i = sampled from the GP (e.g., their smoothness, length-scale,
L,...,|T}. F|gure 3 (left) depicts an arb!tr_ary smgle-va_lue%mp“tude’ etc.), which can be used as estimationg(s.
latent functiong(x) and a couple of training observationsrherefore the covariance function incorporatesyter belief

(IT] = 2). A Gaussian process (GP) is a collection of randoy pias) about the function(x) to model. Consider, e.g., the

variables, any finite subset of which have consistent joidf,ared exponential covariance function (often refercedst
Gaussian distributions. The consistency requirement m1€aia| basis or Gaussian covariance function):

that the distributions of any finite subset of random vagabl
satisfies the marginalization property. That is, the joiistrd o(xi,X;) = UJ% exp(—
bution of any finite subset of random variables is obtained
from the joint distribution of any arbitrary superset of the whereafc is the “signal variance” which controls the order of
original subset by marginalizing out the additional valéab magnitude of the sample functions (i.e., the scale of thpuyit
(€.9. p(v1) = [p(v1,v2) dvy, wherew; and vy are WO angd; defines the characteristic length-scale of the process,
random variables). which informally can be thought as “roughly the distance you
When a GP is used to model the regression task, the randgye to move in input space before the function value can
variables represent the values of the latent funcgico at dif- change significantly” [6], i.e., the distance in the inpuasp
ferent locationsx. Therefore, the random (function) variablesgy the random function variables to become almost uncor-
can be indexed by the continuous functigix). In this paper, reglated. The covariance cay, g;) between variableg;, g,
g; denotes the random function variable associated with thgcreases as the distance between their corresponding inpu
input x; which characterizes the possible values §dk;). x, x. increases. Adopting the squared exponential covariance
By definition of GP,n arbitrary random function variablesfynction is equivalent to approximating the latent funtio

A. Gaussian process model

1
ﬁ”xi - x1%) (5)

g8 ={91,92,...,9n} have a joint Gaussian distribution: g(x) by alinear combination of an infinite number of Gaussian
p(g|X) = N(g, K) (4) baS|s_funct|0ns [6_], [13]. Furthermo_re_, the sguared_eprab
covariance function generates infinitely differentiablend-
where X is the set of corresponding inputs (indexeX),= tions. Figure (4) contains five single-valued functions gket
{x1,%2,...,%X,}, and N (g, K) denotes a multivariate Gaus-from a zero-mean GP with squared exponential covariance

sian distribution with mean vectog and covariance ma- function.
trix K. In Fig. 3 (right), the function variableg; and g
characterize the possible values of the single-valuecthtlate . -
function (dotted line) at locations = 1 andz = 3, respec- B. Gaussian process prediction
tively. Both random variables follow a Gaussian distribati Gaussian process regression (GPR) assumes that the ebserva
obtained by marginalizing their joint Gaussian distribati tionsy; = g(x;)+e€ are affected by white noise following an
p(g1,93/{x1,23}). Cross-marked points show the mean ahdependent and identically distributed Gaussian distidin
the Gaussians, corresponding to the unknown vajggésand with zero mean and varianeé. For example, the observations
g(3), respectively, while error bars denote the mean value 1, ys} depicted in Fig. 3 (left) are generated by settirfg-
three times the standard deviation (corresponding to thi&89 0.2. Lety = {y1,¥2,...,y1|}. Analogously to the symbol
confidence interval). p(g), in this papem(y) is used as short notation fp(y|X),

A GP is aconditional probabilistic model. The distribution where X is the set of training inputs corresponding to the
p(x) on the inputs is not specified, and only the conditionalbservationsy.
distribution p(g| X) is actually modeled. For notational sim- GPR is aBayesiarprobabilistic method. A Gaussian process
plicity, in the rest of this paper the explicit conditioniramn is used to express thggior belief about the functiog(x) to be
the input is omitted, with the convention thafg) stands for modeled beforeconsidering any training observation.mvise
p(g|X), where X represents the appropriate inputs where thraodel (or likelihood) is designed to link the observatiogs
function variablegz are conditioned on. to the latent function. Bayesian inference can then be egpli
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Fig. 3. (Left) Traditional regression task. The singleweal latent functiory(z) is represented by the dotted line. Square-marked pointesept a couple
of noisy training examples. (Right) GP model. The random Wemg; and g3, following a Gaussian distribution, characterize the fimesvalues for the
latent function (dotted line) at locations= 1 andxz = 3, respectively. See text for details.

3 ‘ ‘ ‘ 3

1 2 3 4 0 1 2 3 4
X X

Fig. 4. Five sample functions from a zero-mean GP with a squaxgdnential covariance function with? = 1, I = 0.5 (left) ando? = 1,1 = 1.5
(right). In both plots the straight line represents the mearction of the GP and the shaded area is obtained by summingthewise mean function +/-
two times the standard deviation for each input value (cpoeding to the 95% confidence region).

to make predictions from the available training exampled arvidence) is obtained:
the prior belief. i

When using a Gaussian process, the joint distribution of ply) = / p(y|g)p(g)dg = N(0, K + 021) (9)
the latent function variableg given the training inputsX is

a multivariate Gaussian: The termmarginal refers to the marginalization ovey. With

p(g) = N (g, K) (6) the prior (Eqg. (7)), the Iikelihqod (Eq. (8)) and the evidgnc
(Eq. (9)) components, Bayesian inference can be applied to
with g and K being the mean vector and the covariance masake a prediction on a test input.. For this purpose, the
trix, respectively. Equation (6) defines the prior for Bages joint distribution under the prior GPof the observed outputs
inference and the corresponding Gaussian process iseéfefy and the unknown function valug, = g(x.) at the test
to asprior GP. The components @ are usually set to zero, locationx, is derived:
thus Equation (6) can be rewritten:

p(g) = N (0, K) @ p(y,gs) = Li] _N ([8} ’ [K Jl;;aif IE*D (10)

Under the assumption of Gaussian white noise affecting the . e 1.

. . ; _ = c(x4,x,) and the|T| x 1 vector k, contains
observationgy, a suitable noise model is:

the covariances:(x;,x.) among the training and the test
p(ylg) = N(g,onl) (8) inputs. Matrix X + o721 is the covariance matrix of the noisy
observations, that is generated by simply adding the diagon

where I is the identity matrix. By integrating over the un-matrix 027 to the matrix K. In fact, under the additive,

03

observed function variableg, the marginal likelihood (or independent and identically distributed noise assumption



covariance among observations is formulated as: estimated correlation among the test inputs. In fact, when

combining the prior Gaussian process with the observations

by Bayesian inference and under the Gaussian noise model

where § indicates the Kronecker delta functios; ( = 1 if ~assumption, a Gaussian process on its own is actually @lotain

i = 7, 0 otherwise). referred to as th@osterior GP. It has the following non-zero
The predictive distribution over the candidate values fdnean and covariance functions:

g(x,) is obtained by conditioning on the observed training

cov(yi, yj) = c(xy, Xj) + 0351,]'

outputsy: pr(x) =K'(K +o21)"ly (18)
PLY; 9=«
p(g.ly) = 222 (A1) covr(gig,) = er(xix;) = elxix,) — KK +020) 'k,
p(y) (19)
The result is the predictive Gaussian distribution: where the|T| x 1 vector k contains the covariances among
L|y) = N(G, 02(g. 12 the training inputs and inpuk. The index T in function
Plg-ly) (9, 07(9+)) (12) symbolsur andcr highlights that the posterior Géepends
where on the training observations. The posterior variangéx, x)
Ge = u(x.) =K. (K + 0217 'y (13) is equal to the prior variance(x,x) minus a positive term,
02(g.) = ke — K.(K + 021) 'k, (14) which depends on the training inputs. Thus the posterior

variance is always smaller than the prior variance, due &o th
Note that GPR estimates the probability distributiofy.|y) additional information provided by the observations. Nibit
over the candidate values fgi(x.), rather than providing a the predictive distributiong(g..|y) andp(g.|y) for single and
single prediction (estimated best guess) §¢x.). The value multiple test cases, respectively, are consistent with (E8)
u(x,) is used as the estimation fgr., while the variance and Eq. (19). Figure 5 (left) depicts five sample functions
o%(g.) defines how much the GP model is confident with thigom the GP posterior, obtained by using the prior GP defined
estimation (larger variance means smaller confidence). in Fig. 4 (left) and by setting the noise varianeg to the
The Cholesky decomposition of matriX + 021 enables a value 0.2. Usually, the mean functiops(x) (solid blue line
fast and numerically stable implementation of Equatior® (1in Fig. 5 (right)) is used as the estimation of the latent figrc
and (14). However, the complexity of inverting the matrixy(x). In fact, the mean function can be interpreted as the
K + o021 is O(|T]?), where |T| is the number of train- average of a large number of sample functions drawn from
ing observations. The computation of the predictive medhe GP posterior, each one providing an estimatiory(of).
(Eq. (13)) can be reduced t©(|7T]), as it can be rewritten When using GPR within the ALP algorithm, the mean function
as u(x.) = k.8, with the factor3 = (K + o21)"'y of the posterior GP represents the Pareto front learnt from
calculated just once for multiple predictions. A similaesg- approximated Pareto-optimal training vectors.
up cannot be achieved for the computation of the predictive
variance (Eq. (14)), which cost3(|T'|?) per single test case.
Therefore, GP training scales cubically with the number
training examplegT’|, while predictions are quadratic if"|, Gaussian process regression is a non-parametric technique
making prohibitive the application of GPR with more thams no parametric formulation of the latent function (e.g., a
few thousands of training examples. However, within oweighted sum of fixed basis functions) is assumed. However,
problem settings, much smaller data sets are used by the Atd¥ariance functions typically have a set of free paramseter
algorithm, as the generation of training examples is exgens In the GPR literature, these parameters are usually referre
The predictive distribution in Eq. (12) can be computed fdo ashyperparametersto emphasize that they are parameters
any set X, of test inputsx,. In this case, Equation (10) isof a non-parametric model [6]. The hyperparameters control
reformulated as follows: the shape of the sample functions drawn from the parametric
y N 0] [K+02I K, prior. For example, _the two pictures in Fig._ 3 show_ how
gJ = <{0} ) { K! K**D (15) the hyperparametelr in the squared exponential covariance
function (Eq. (5)) affects the length-scale of the sample
where the|T'| x |X.| matrix K, contains the covariancesfynctions. In the rest of this paper, the hyperparametetbef
among training and test locations, whil... is the covariance Gp model, consisting of the covariance function parameters
matrix of test inputs. The predictive joint distributigiig.|y) and the noise variance2, will be collectively referred to

n?

of the test outputs(. has the following non-zero mean vectohy the vectorg. For example, when considering the squared

&. Gaussian process training (model selection)

p(y, g) = [

and covariance matrix: exponential covariance functio,= (07,1, 07].
g, = K/(K +02)"ly (16 _In_ pri_nciple, as GP_R is a prc_;babilistic model, a prior
N distribution p(@) encoding the belief about hyperparameters
cov(g.) = Kuw — K (K +0,1) ' K, (17)  can be defined. The predictive distributipig. |y) for a test

The joint distributionp(g.|y) is the posterior distribution Input . can then be obtained by marginalizing over the
yincertainty in the hyperparameters:

for a finite setof test cases. While the predictive marginal
distributionsp(g.|y) provides information about a single test
input, the predictive joint distributiorp(g,|y) defines the p(g+[y) :/p(9*|y’0)p(0|y>d0 (20)
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Fig. 5. (Left) Sample functions from the posterior GP. (R)gkean function (solid line) of the posterior GP approximgtithe latent functiory (dotted
line). In both plots, squared points show the training exaspind the shaded area depicts the 95% confidence regiom isldefined at each input location
x by the interval[ur (z) — 202 (), ur (x) + 202 ()], with o2(z) = cr(z, ©).

That is, the predictive distribution is obtained by consialg In general, maximizing the quantity log(y|@) is a non-
the predictions fronall the possiblé values weighted by their convex optimization task. Standard gradient-based opéimi
posterior probabilityp(8]y). The inclusion of the termp(8|y) tion algorithms, e.g., conjugate gradient techniques @sgu
enables to rely on predictions @lausible hyperparameters Newton methods, are typically adopted to search for loeally
settings. However, in general the above Bayesian fornmratioptimal points. The cost of computing the log-marginal dike
cannot be evaluated analytically and expensive numeridilood and its gradient is dominated by the inversion of the
methods have to be considered [6]. Therefore this approamvariance matrixk + o21. The inversion is performed at
cannot be adopted by the ALP algorithm, which re-trains treach of the iterations of the optimization algorithm, yielding
GP model several times with an increasing training set. a complexity ofO(/|T'|?). When the number of hyperparam-
Instead of considering the predictions from all possibleters is small w.r.t. the number of training examples, local
hyperparameters settingssimgle value for@ can be inferred optimizers are not usually a problem [15]. However, with
from the observationg. A popular choice consists of selectingsmall-size training datasets, local optimizers may desgdhe
the value & maximizing the posterior probability)(@|y), performance of the optimization technique. Random restart
defined as: of the optimization algorithm overcomes the search stag-
p(6ly) ~ p(y|6)p(6) (21) hation into the local optima. Furthermore, investigatiig t
6 configurations corresponding to the local minimizers may
The term p(y|@) corresponds to the marginal likelihoodbe worthwhile. In fact, every locally-optimal configuratio
defined in Eq. (9), which can be rewritten as follows t@orresponds to a particular interpretation of the trainiaga.
highlight the dependency of the function variableon the When a small number of training examples is available,
GP hyperparameters: locally-optimal configurations with significantly diffemelog-
likelihood values may providelausible alternativeinterpre-
p(y|0) = /p(y\g,@)p(gw)dg =N(0,K +02I) (22) tations of the training examples [6] (e.g., low noise lewgl
and short length-scalew.r.t. high noise level and long length-
Although a suitable prior distributiop(6) in Eq. (21) helps scale).
in discarding unreasonable values &f[14], when the prior In addition to the optimization of the covariance function
belief about the hyperparameters is vague, the componéiperparameters, the model selection procedure may also
p(8) is typically set to the uniform distribution (i.e., ignoded include the discrete choice between different functionafis
Therefore Eq. (21) reduces to the maximization of the maigir(i.e., models) for the covariance function. In particultre
likelihood. For numerical reasons, the log-marginal likebd functional form can be selected by simply comparing the
is used. The valué is thus obtained by maximizing w.r6. maximum likelihood values computed for each candidate

the quantity: model. Finally, rather than resorting to a zero-mean priby G
a parametric formulation for the mean function can also be
log p(y|6) = log N'(0, K + 071) = specified. Its hyperparameters are included in the vettmd
_ BI 9 ll K 27 optimized together with the noise model and the covariance
=- 509 em—5log (Ko dl= (23) function hyperparameters.

LYK + o2y . o
2 D. Uncertainty sampling with GPR

The quantity logp(y|@) represents the log-evidence for théAcquiring training examples for supervised learning taska
specific GP model defined by the hyperparameters setéingstypically expensive and time consuming process. Activenlea



ing approaches attempt to reduce this cost by actively stggef both training the GP (i.e., log-likelihood maximizatjosnd
ing examples for which supervision should be collected,nin anaking predictions i€(|7'|*), with |T| being the number of
iterative process alternating learning and feedbacktation. training examples. Therefore GPR does not scale well with th
To minimize the number of training examples generagéetive number of training examples: neither the predictive disition
learning methods select the inputs that provide the highesir the marginal likelihood can be computed exactly witkyéar
information gain for the learnt model. The informativenesdatasets. In this case, one can use approximate and sparse
of the query inputs can be defined in different ways anmuethods, which decrease the complexityx(.S|*) by select-
several active learning techniques exist (see [16] for arecing an informative subsef C T of the training examples [6].
review). One of the most popular is the uncertainty samplirtgowever, in our settings exact inference is possible bexafis
principle [7], which considers the input with highest piadie the limited size ofl’. The ALP algorithm adopts GPR because
uncertainty as the most informative training example fa thit can quantify the confidence about the predicted regressio
current model. functiong. The estimation of the predictive uncertainty enables
The ability of GPR in estimating the confidence for individa sound application of thencertainty samplingrinciple. In
ual predictions enables a suitable application of the uat®#y particular, the predictive uncertainty on a test input is
sampling principle. A large variance?(g.) of the predictive quantified by the variance?(g.) of the predictive Gaussian
distribution NV (g., o2(g.)) for a single test inputx, means distribution of theg, values.
that the test sample is not represented by the GP model learnt
from the training data. The predictive variance quantiftes t
predictive uncertainty of the GP model, and therefore the
input maximizing the predictive variance is selected by tHestimation of Distribution algorithms (EDAs) are Evolutiry
uncertainty sampling principle. techniques which generate a probability model of promising
With GPR, predictive uncertainty grows in regions awagolutions based on statistical information extracted fribie
from training inputs. The plot in Fig. 6 (left) is obtained bycurrent population. New candidate solutions are samplea fr
adopting a squared exponential covariance function witkdfixthe model and used to update the current population.
hyperparametersj% = 1,1 =05, 02 = 0.2. When the GP  ALP shares with EDAs the extraction of statistical global
model is re-trained with the inclusion of the most uncertaiimformation from current data. However, our technique is no
input (triangular marker in Fig. 6 (left)) in the trainingtse developed within the Evolutionary framework. EDAs typlgal
the prediction accuracy improves, as clearly showed by &-iggenerate a probability distribution of promising solugan the

V. RELATED WORK

(right). decision space, which is used by the genetic operators teerefi
the current population. A finite PF approximation is prodde
E. Summary by the population. On the contrary, the model learnt by ALP

Regression based on Gaussian process (GPR) assumés an analytical PF approximation and the training examples
Gaussian noise modeln particular, at each input locationare Pareto-optimal points generated by solving differédPs
x the noisee follows an independent Gaussian distributiofrurthermore, the SOPs are not fixed at the initializatiorspha
with zero-mean and identical varianeg over the whole but they are dynamically generated based on the predictive
input domain flomoscedasticitproperty). Ifg(x) is the latent uncertainty of the current PF model. Selecting the newitngin
function to be estimated, the training valyge observed at inputs based on the predictive model uncertainty provides t
input x; is given asy; = g(x;) + €. Furthermore, the joint advantages. First, it enables a computationally cheaper an
distribution of the noise over each arbitrary subset of thecurate PF approximation. Second, because the predictive
inputs is anultivariateGaussian satisfying thearginalization uncertainty increases when moving away from the current
property. Predictions are obtained by Bayesian infererama f training inputs, a diversified set of Pareto-optimal solog,
the training data and from the prior belief about the lategorresponding to objective vectors distributed over thelah
function g. The prior information is encoded by a prior GausPF, is provided to the decision maker.
sian process, completely specified by its mean and covarianc Rather than learning a model of the promising solutions like
functions. The covariance function defines the correlatidhe EDAs, surrogate-based EMOAs [17], [18] adopt machine
between two arbitrary random function variablgs g;, and learning methods to generate surrogates of the MOP fursction
thus the similarity between the corresponding inpufsc;. Surrogates generation is particularly convenient when the
The covariance function characterizes the properties ef tBvaluation of the original MOP objectives is computatidnal
regression functions (e.g., smoothness) that can be dgeder&xpensive. The aim of surrogate-based evolutionary dfgos
by the GP. Both the mean and the covariance functions asethe reduction of the run-time and the computational cost
parametric, and their (hyper-)parameters, together waighvf  spent to drive the population towards the PF.
parameter of the noise model, are usually tuned by maxigizin The rest of this section includes a description of EDAS,
the log-likelihood of the training data. Log-likelihood opti- mostly examining the state-of-the-art MMEA algorithm, wini
mization trades off the model complexity (regularizatiamd is the ALP benchmark in our experimental studies. A discus-
the model fit to the noisy input data [6]. sion about surrogate-based (Evolutionary) optimizatioh f
The Gaussian noise model enabdesactBayesian inference lows, focussed in particular on the recent MOEA/D-EGO
of the predictive distribution on the test inputs and exach¢ approach, which employs the Gaussian process optimization
putation of the log-likelihood. However, thtme complexity paradigm.
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Fig. 6. Uncertainty sampling with GPR. The interpretationtieé solid, dotted lines, of the squared points and the shadeal is the same as in Fig. 5.
(Right) The triangular mark on the x-axis highlights the inguwhere the GP prediction is most uncertain. (Left) The GP pt&xni accuracy improves when
including examplgx, §) in the training set.

A. Multi-objective Estimation of Distribution algorithms pairwise dependencies only, more complex interactionsngmo

Estimation of Distribution Algorithms (EDAs) learn a jointsubsets of variables are represented by multi-variate lmode

probability density function over the decision variables ol N€S€ models are usually the product of marginal probgbilit

the optimization problem. The probability density funatio diStributions, called factors, defined over (overlappisghsets
models the distribution of the promising solutions in thQf the decision variables. The increased expressiveneteeof

current population, with the purpose of learning the pattefnore sophisticated models, like the multi-variate distiitns,
characterizing the set of promising solutions. The pattern "as {0 be traded off with their larger computational cost.

generated by dependencies among the decision variabies, of A common approach to build computationally tractable
referred to ayariable linkageq4]. The learnt information is models relies on the Gaussian distribution assumptionffer t

used to predict the distribution of new high-quality sabus decision variables. The multivariate Gaussian distrdoutis

thus driving the search towards the promising areas of tHgfined by the vector of mean values (one for each decision
space. In particular, at each generation of the algorithe tvariable) and the covariance matrix. The mean vector deter-
probability density function is sampled to generate a set Btines the bias of each variable values and the variances, i.e
candidate solutions. This sample is then evaluated withes the entries along the diagonal of the covariance matrixndefi

to the objective functions of the problem and it is used toeefi (e Spread of the values. The covariances (the off-diagonal

the current population. Based on the refined population, mm@ntries in the matrix) define the pairwise dependencies gmon

accurate model generating better-quality solutions wighér the decision variables. o
probability can be learnt in the next iteration. The generic Different EDAs for multi-objective optimization (acronym
framework of EDAs is in Fig. 7. MOEDAs) have been developed. The works in [23], [22]

The motivation for EDAs is given by the limitation OfIearns a single probability distribution modeling the wéol

common genetic operators: when two parents are in the Parch space. To promote the diversity of the populaticm, th
their offspring may not be close to the PS. An analogo@@Proaches in [24], [20], [11] partition the populationant

behavior is observed when applying the mutation operat ;‘ferent clusterg and learn a s.e.parate !ocal model .for each
if the original solution is Pareto-optimal, the modified ol cluster. Depen_dlng on th_e _specn‘lc algonthm,_ clusterlng/ ma
tion may be dominated. Rather than resorting to traditiongﬂa performed in the_deC|S|o_n space [11] or in the objective
genetic operators, EDAs refine the population by updatir?@ace [24], [20]. A mixture distribution can be used to aggre

and re-sampling the probability model of promising solosio ga'tAe the Iorc]:al prclqubilistic mor(]je(ljs [i/IOéEDA 19 |
Therefore, the generated probability model should describ mong the evolutionary methods, s [19] are closest

accurately the promising areas of the search space. Furtfi@rour approach, sharing with ALP the extraction of global

more, a complicated model requiring expensive generation astanstlcal information from the current data. Therefore i

sampling operations is not suitable in the context of EDAs, éhe following, we focus on the. MMEA algorithm [24]' a

these operations are repeated several times during tmqseasrtate—pf—the—art MOEDA which will be the touchstone in our
Different probability distributions can be used in EDAsdanEXpe”ments'

different machine learning methods can be adopted to learn )

and sample them [19]. In particular, the dependencies amdpg The MMEA algorithm

the decision variables can be modeled by univariate [2@areto-optimal solutions are typically not scattered atlcan

bivariate [21] and multivariate [22] probability distribons. over the decision space. Their distribution indeed exihit

Univariate models are based on the assumption of indepetear geometric shape. In particular, under mild smoothnes

dent decision variables. While bivariate distributions mlod conditions, both the PF in the objective space and the PS in
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1 procedure EDA
2 input: multi-objective optimization problem, population size|
output: finite set of points (i.e., populationly approximating the PS

@

generate the initial populatio® /* Initialization */

4.

5, do

6. Generate a model/ for the distribution of the individuals i® /* Modeling */
7 [ SampleM to generate a set of new solutio@s/* Reproduction */

8 Select|P| from P U @ and replace the individuals if? by them/* Selection */
9 until (termination criterion)

10, return populationP

Fig. 7. Generic EDAs framework. The termination criterionyipitally represented by a pre-defined number of iteratioms, (population generations within
the Evolutionary metaphor).

the decision space are piecewise continuous manifolds [1Ayper-cuboid¥; locally approximating the PS. The range of
While the dimensionality of the PF manifold ia — 1, with each axis is provided by the smallest hyper-cuboid, cedtatre
m the number of objective functions, the dimensionality & ththe empirical mean of the subpopulation solutions, coirigin
PS manifold is typically larger and unknown. The RM-MEDAthe projections of all the subpopulation solutions on thecep
algorithm [11] has been designed to tackle MOPs where thpanned by theij axes from the center of the cuboid. The
PS dimensionality isn — 1. MMEA [24] extends RM-MEDA range of each axis is then enlarged to increase the cuboid
to handle the case of unknown larger PS dimensionality. Thelume by a factors, with 8 being a control parameter of
rationale for MMEA is the assumption that the populatioMMEA. The rationale for this choice is the promotion of the
of the EMOAs becomes scattered around the PS as #ploration of promising regions in the decision space Hwit
search goes on. Therefore, the PS approximation genergteddspect to the directions explaining most of the variandfén
EMOAs is provided by the candidate solutions located withidata).
the central region of the area containing the current pdjpmia  The local distribution of promising solutiong for the j-
Under this assumption, promising candidate solutions @an th subpopulation is modeled by a uniform probability vec-
locally modeled by a probability distributicghwhose centroid tor on the jth hyper-cuboid and a Gaussian additive noise
is the approximation to the PS. Each solution of the curresdmponent. Thek local probability model¢; are sampled
population is considered an independent observation dbwvecto obtain a set of new candidate solutions (reproduction by
&. sampling) which are used to refine the current populatioe. Th
In order to generate a model of the Pareto set, MME#ampling procedure consists of selecting the hyper-cutigid
clusters the population members in the decision space invih probability P;, picking uniformly at random a point”
a number of sub-populations based on the distribution df thérom ¥; and perturbing” by an additive noise vector sampled
images in the objective space. This approach favours dliyersrom the noise component. When the sampled solution does
in the objective space. As the PF dimensionality is assumednot belong to the feasible regida in the decision space, it is
bem—1, the PF is approximated by fittingra—1-dimensional discarded and replaced by a new candidate selected unyforml
simplex over the objective vectors. In detail, théa ivertex of at random within(2.
the simplexS, i = 1,2,...,m, is the vertex corresponding to
the non-dominated solution with largegt value. SimplexS
is shifted along its normal direction by the minimum disancC: Surrogate-based EMOAs
enabling each point i§ to be non-dominated by the vectors irEDAs use statistical models to generate the offspring of the
the population. Finally, the volume 6fis arbitrarily increased population, which is then evaluated w.r.t the original chijee
by a factora to favour the exploration of the objective spacefunctions to build the new generation. A different usage of
The objective vectors are clustered aroundsference points statistical models in EMOAs consists of learninguarrogate
uniformly distributed over the simplex. of the original objective functions. The approximated chije
By clustering in the objective space, the solutions in thealues predicted by the surrogate model are used to estimate
decision space are partitioned inko(possibly overlapping) the quality of candidate solutions, without evaluating the
sub-populations. Each subpopulation provides a localegppr original MOP functions. The surrogate model (also referred
imation of the PS. In particular, a linear local approxiroatof to asmeta-modebr response surface moddk therefore an
the PS is obtained by applying the principal component analpproximation of the original fitness surface. This approxi
ysis technique (PCA) over each subpopulation independenthation is used to reduce the number of evaluations of the
The unknown PS dimensionalityis locally estimated by the original MOP functions. The surrogate model is usually iear
numberd;, j = 1,2,...k, of principal components explainingfrom solutions already evaluated. Different techniquesmnfr
a preset percentageof the variation in the fh subpopulation the statistical learning community have been used to ldan t
data, wherd is a control parameter of MMEA. The firss?tj surrogate models [17]. Analogously to the model generation
principal components obtained by PCA identify the axes ef tHEDAs, because a surrogate model is usually trained, refined
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and evaluated several times, a trade-off among its accurd®ing defined at the initialization stage. In particulag 8OPs
and its computational cost has to be considered. generation is driven by the predictive uncertainty of these
With respect to ALP, a relevant surrogate-based approa@lP model. Furthermore, a single Gaussian process model is
is the recent MOEA/D-EGO algorithm [25], a variant of thdearnt by ALP to solve a regression task, i.e, generating an
MOEA/D algorithm [26]. The Multi-Objective Evolutionary analytic approximation of the PF. In MOEAD/D-EGO the GP
Algorithm based on Decomposition (MOEA/D) decomposesiodels are used to efficiently solve SOPs, i.e., to find the
the original MOP intos SOPs, obtained by scalarization. The@ptimum of a function with the lowest number of function
objective of the ith SOP,i = 1,2,...s, is a parametric evaluation possible. Therefore, in MOEA/D the learnt GP
combination h(x|A;) of the original MOP objectives, with model is used as a response surface to search for likely
A; being the vector containing the scalarization parametecandidate global optima.
The generated SOPs differ from each other in the valuesin ALP, the training examples are generated by solving
of the parameter vector. A neighbourhood relation amorige non-linear problem in Eq. (3). Our future research will
the SOPs is defined, based on the distances between theirsider surrogate-based techniques for single-obgcipti-
parameter vectors. Each SOP is optimized simultaneoustyzation, in order to reduce the computational cost of ALP
by using information mainly from its neighbouring SOPssupervised information.
This approach assumes that neighborhood problems arg likel
to have similar solutions, and therefore they can profitably VI. EXPERIMENTAL RESULTS

exchange information during_their joint optimizatior_l. They p is tested over the RM-MEDA benchmark introduced

phopulgtg)g of MOEAD/D consists of the current solutions %h [11] to evaluate the ability of EDAs in recovering the Rare

t T\/ISOEA/DS.EGO | Gp del h front. As the best results over the RM-MEDA benchmark
) eams a surrogate model for eac OtP\'as been achieved by the MMEA algorithm [24], the latter

Jective pf the .or|g|nal MOP' The ”a"?'”g set is the CurrerVepresents the touchstone in our experimental studies. In
population which contains all the solutions evaluated soXa articular, the optimal setting of MMEA parameters is taken
predictive model is then derived for each SOP, i.e., for eagh papér [24]

pare_xmetric combinatio_m.(xp\i) of the .MOP objectives. I_p The experimental studies are described as follows. First, t
particular, the ith predictive model estimates the prObab'l'tyRM-MEDA benchmark is outlined. The setting of the ALP

dlstr_lrbhutlon Sf bt.lhe gf""“?bs pfh(.X*P‘i)da.t eachb.test. 'npu,thalgorithm is then detailed and a single ALP run is showed, in
X.. The probability distribution Is used in combination with, 4o 1, provide a paradigmatic case of the PF approximation
the expected improvement metrig(x), which measures the

) S . o refinement observed during the learning iterations. The-com
merit of evaluating inpuik (by the original MOP objectives) g g

- . arison with the MMEA algorithm is given in Subsec. VI-E,
to optimize h(x|)\;). The s expected improvements;(x), P g g

1 imized simul | biaj ._following the description of the comparison metrics addpte
' .’ﬁ’; : .bs,.arehoptlmlze ' simu talnepus y to obtain po'm%—inally, ALP is applied on the welded beam design MOP [27],
X W't. X; being the apprpmmatg S0 ut|qn maX|m|zncng(?<). a widely-used benchmark introduced in the spirit of realldor
The simultaneous optimization is obtained by applying t

MOEA/D algorithm. MOEA/D optimizes);(x) by exploiting timization tasks.
the solutions that maximize the expected improvementsef th
neighbouring SOPs. A subset of the poifits i = 1,2,...s A The RM-MEDA benchmark
is then selected to be evaluated by the original MOP objeeer a comparison with ALP, we consider the bi-objective
tives. The selected points are finally included into the entrr problems of the RM-MEDA benchmark [11]. By using the
population. numbering adopted in paper [24], the benchmark set is thus
Even if MOEA/D and MOEA/D-EGO share with ALP theformed by the instances ZzZJ®8, ZZJ08F2, ZZJ08F3,
generation of scalar SOPs and the adoption of GP modelZ,J08+5, ZZJ08F6 and ZZJO8F7. These instances are
their approach is very different from ALP. MOEA/D andderived from the widely-known Zitzler-Deb-Thiele (ZDT)ste
MOEAD/D-EGO use a pre-specified number of parametrfsroblems [28]. The PS of the bi-objective ZDT problems
SOPs with uniformly distributed parameter vectors defingd parallel to the coordinate axes, because of the lack of
at initialization. Pareto-optimal solutions (or approxition dependencies among the decision variables. This deficiency
thereof) are obtained by solving the subproblems generatattoduces a bias in favor of the commonly used crossover
by the set of weighting vectors. However, it may be difficulbperator: if two solutions are Pareto-optimal, their offisp
to select suitable parameter vectors for obtaining satstiois likely to be Pareto-optimal. Furthermore, variable &glks
evenly distributed over the whole PF. For example, in thexist in many applications and their inclusion into testesi
weighted sum aggregation method [1], an uniform distridouti has been suggested by different works [29], proposing bigria
of parameter vectors does not necessarily generate a setrafisformations for introducing dependencies among tlee de
solution evenly distributed over the PF [1]. sion variables. The RM-MEDA instances F1, F2, F3 introduce
On the other hand, ALP learns a GP global model of tHmear linkages in the formulation of the ZDT1, ZDT2 and
PF from a training set of approximate Pareto-optimal vectoiZDT6 test problems [28]. Nonlinear dependencies among the
The training set is generated on-line, with each trainindecision variables have been added to the definition of the
example being the solution of a SOP. Therefore, the SOPs aagne ZDT instances to generate the RM-MEDA problems F5,
dynamically generated during the search process rather th, F7. Their Pareto sets consist of bounded continuougsurv
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B. ALP setting at the initial iterations of the ALP algorithm, when the nuenb

of training examples is limited.
In order to avoid any bias favouring our method over the

competitor, the PF manifold is arbitrarily expressed by-cora: A single ALP run in detail
sidering zo as a function ofz;: zo = g(z1). To apply the . )
ALP algorithm, the Ideal and Nadir poingg? andz" of the A single run of the ALP algorithm over MOP ZZJ(R2 is

above MOPs are computed offline. In particular, the domaffown in Fig. 8. The predictive GP model is depicted by

(21D 2N] of the regression task is equal {0,1] for all the solid line, while the dotted line represents the unknown

the considered MOPs, with the exception of probleRgs Pareto frontz; = g(z1). The shaded area represents the 95%
and F7 where the domain is the intervé.281,1]. ALP is ponfujence_ interval for the pr_edlctlve GP model. At the first
implemented in Matlab R2008a. In particular, the optinigrat it€ration, with a couple of training examples only, the fgdtF
problem (3) generating supervised information is solved jodel is a line, while the order of magnitude of the predetiv
using the continuous local search algorithms for constchinvariance isl0=° and thus the shaded area cannot be visualized.
optimization provided by the Matlab Optimization ToolB¥x The mclusmn_ of the new training examplg located at input
library. In detail, a sequential quadratic programmingoalg 21 = 0-01 (triangular marker over the-axis) changes the
rithm [30], [31] is used, except for problen8 andF7, where ;Iope of the !lne, while constant predictive uncertam.ty'ruhe

an interior-point method [32] is adopted. The choice of thi@Put space is observed. In this case, the ALP algorithmeslac
optimization strategy is based on the observed convergefigé New query point at the inpui maximizing the minimum
rate to the (local) optima of the functiof,. Both strategies distance from the training examples. At the third iterafitre
are implemented by the “fmincon” Matlab routine. A singléccuracy of the learnt model improves. Predictive unaefyai
run of “fmincon” algorithm is performed, initializing at pa  INcreases when moving away from training examples and
dom the starting point and limiting the number of scalarize}® shaded area entails the Pareto front to be modeled. The
function evaluations t8000. For the considered MOPs, withinuncertainty sampling method selects the inpyt = 0.29
the value 03000, the algorithm usually converges to a (localfS the new training example. At the fourth iteration, with
minimum of the functionf,,. In general, ALP is a flexible 1530 evaluations of the MOP objective functiorfgx), the
framework enabling the usage of alternative constrained d?)F is successfully recovered. Additional refinement iterst

timization algorithms (e.g., derivative-free approaghesher Slightly improve the accuracy of the learnt model (however
than the “fmincon” routine to solve problem (3). the improvements cannot be visually observed), while the

predictive uncertainty becomes null. In general, the adapt
examples uniformly at random within the input space. In th f the aclive leaming to generate the training examplesues

performed experiments, the mean function of the prior GPtI e any_t|me property: when.mcr(.aasmg the number of funstio
the linea x z 4+ b, with {a, b} being the mean function hyper_evaluatlons, the PF approximation improves.

parameters. Three candidate forms for the covarianceitumct

are considered: the squared exponential (Eq. (5)), theahed?. Comparison metrics

network and the Ma&rn covariance functions (see book [6]The performance of the ALP and MMEA algorithms is
for their formulation). In combination with the mean andvaluated by measuring the quality of the recovered PF
covariance functions, we make use of a white Gaussian noigsproximation w.r.t its cost. The cost is expressed by the
model with variancep;,. The hyperparameters vect@rthus number of objective function evaluations rather than th&JCP
includesp?, the mean function hyperparametersndb and time, as the evaluation of complex and expensive objective
the covariance function hyperparameters. The model setectfunctions is the computational bottleneck of the real-dorl
phase consists of two tasks: 1) the choice of the function@loOPs [3]. Furthermore, the number of function evaluations
form for the covariance function, 2) the optimization of thés the commonly used and generally accepted measure for
hyperparameteré. Both tasks are accomplished in one stefhe run time in the multi-objective optimization litera¢uThe

by evidence maximization (see Eq. (23)): for each candidajgality of the PF approximation is estimated by the inverted
covariance function, the vectd? is optimized. The setting generational distance (IGD) and the hypervolume diffeeenc
with largest likelihood value is then selected. In par&cuthe (IH—) metrics. Each metric evaluates the quality of the PF
optimization task is solved by applying a conjugate graieapproximation recovered by an evolutionary multi-objeeti
algorithm. Ten runs of the algorithm are performed, each oagyorithm (EMOA) by measuring both the convergence and the
consisting of50 conjugate gradient steps. A different startingjiversity of its population. The adopted metrics are caitad
point 8;,,;; is used for each run. A suitable selection of thaccording to the procedure described in paper [24].

starting point, based on the prior knowledge about the eésir A test setP* of Pareto-optimal objective vectors uniformly
PF model, drives the optimization algorithm towards (I9cakpread over the PF is generated. WRrdenoting the popula-
minima which provide plausible interpretations of theriiag tion of the EMOA, the IGD metric is defined as follows:

data. In particular, the slope of the mean function in vector > d(z*, P)
0, is initialized to the value-1. In fact, any connected PF IGD(P*, P) = ==& =

of a bi-objective minimization problem can be modelled by [P
a strictly decreasing function. The gain from the inclusain whered(z*, P) is the minimumEuclidean distance from the
prior knowledge in the starting point design is more sigaific Pareto-optimal vectoz* to any objective vector i, while

ALP training set is initialized by selecting two training

(24)
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Fig. 8. Generation of most informative training examples wiidving MOPF2. Each figure depicts the PF (dotted line) of the learnt moddiddine).
The Figures refer to the first, second, third and fourth refieet iterations, respectively. Shaded area denotes the 8&fidence interval for the predictive
GP model. On the-axis, the most informative training example, selected byeadgarning, is showed by a triangular marker. At the fourghation (second
row, right figure) the PF is correctly learnt.

| P*| indicates the cardinality aP*. According to the notation analytical PF modej rather than a discrete PF representation,
used in paper [24], the IGD metric is denoted as IGD#e populationP is computed by sampling the analytical
because it measures the quality of the PF approximation (iBF model. In particular|P*| sample vectors of the form
P is a set of objective vectors anldz*, P) is the Euclidean z = {z},g(z})} are generated by evaluatirigz;) for each
distance in the objective space). The dominated hypenelum® € P*. Any dominated objective vector among the*|
metric IH(P) (hypervolume for short, also known as Lebesgugamples generated is discarded. Furthermore, as the AbP alg
measure or S-metric) measures the size of the objectiiam may generate PF models which are (partially) infdasib
space dominated by the populatian and bounded by a (this behavior has been occasionally observed during thialin
fixed reference point [33]. The hypervolume difference inetrrefinement iterations), the absolute value of the hypemelu
IH™(P*, P) is defined as: difference metric (Eq. (25)) is considered.

IH™(P", P) =1H(P") — IH(P) (25) E. Detailed comparative results

The IGDF and the IH are alternative measures bbth the Fig. 9 and Fig. 10 compare the performance of the ALP and
diversity and the convergence &f, provided that the value MMEA algorithms. The curves depict the evolution of the
|P*| is large enough to represent the whole PF. The lowlEDF (left column) and IH (right column) metrics over the
is the value IGDIFP*, P) and IH™ (P*, P), the better is the number of evaluations of the MOP objective vecf¢x). The
quality of the populationP approximating the PF. To have adashed and solid lines correspond to the ALP and MMEA
low value of IGDK P*, P) and IH™ (P*, P), the population?  algorithms, respectively. Each point is the median valuer ov
must be close to the PF and cannot miss any part of the wha@ runs, executed with different seeds. Error bars denate th
PF. The reference point for the hypervolume computation ainderquartile range (IQR) of data distribution.
the cardinality| P*| used in the experiments reported here are With the exception of MOPE3 andF5, the ALP algorithm
taken from paper [24]. dominates the MMEA technique, achieving on average a PF
The above metrics measure the quality of a finite set approximation with sensibly better quality, in terms of ot
points (population) approximating the PF. When adoptingerformance metrics. For example, over M@®R, within
these metrics to evaluate the ALP algorithm, which recosars 10000 function evaluations, a more accurate Pareto front is
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recovered by the ALP algorithm, and aftei000 evaluations, 30000 — o(x) > 0 (29)

the quality of ALP solution is at least twelve times bettearth b—h>0 (30)

the quality of MMEA solution. P(x) — 6000 > 0 (31)
A stable behavior is observed for both algorithms. The large ¢ -

size of the ALP error bars in the case of MOR is due 0.125 < h,b < 5.0

to the logarithmic scale. In fact, the order of magnitude of 0.1 <1,t<10.0

ALP IQR values for MOPF2 is actually lower than that of

MMEA ones. For example, wheT0000 function evaluations

are performed, the orders of magnitude of the IQR values for. () — \/(T/)2 (724 (1 7 7)//0.25 (12 + (h + £)2)

ALP and MMEA results (measured by the IGDF metric) are 6000

10~° and 103, respectively. =
There is no qualitative difference in terms of the IGDF met- V2 hi

ric among ALP and MMEA results for MOPS, but the ALP~_ _ 6000 (14 + 0.5 1)/0.25 (2 + (h + 1)?)

technique achieves a better average performance in terms of 1414 h 1 (12/12+40.25 (h +t)?)

the IH- measure. When more th&0000 function evaluations 504000

are used to solve MOP ZZJ@83, the performance of ALP is (x) = 2b

not better than the MMEA algorithm. However, with20000  P.(x) = 64746.022 (1 — 0.0282346 t) t b®

function evaluations, the quality of ALP solution is betbgrat

least a factor ten than the PF recovered by MMEA. Reasonable

approximations obtained within few function evaluationsia The first constraint (Eq. (28)) guarantees that the sheessstr

many cases preferred to more accurate solutions whichreequi(x) at the support location of the beam is smaller than

a heavier computational effort. In fact, as noted by Lovisofieé maximum shear strength of the material (13600 psi).

in work [10], “even a roughly sketched global picture of th&urthermore, the normal stresgx) at the support location

whole situation can give crucial information on the problam Of the beam must be smaller than the maximum yield strength

hand, suggesting correctly the location of paramount Zone®f the material, 30000 psi (second constraint). Finallg th
thickness of the beam must not be smaller than the weld

E Real world MOP thickness (Eg. (30)) and the buckling lo&l(x) of the beam
along directiont must be greater than the applied load
fburth constraint). A configuratior violating any of the four

where:

ALP has been applied to solve a benchmark problem
the spirit of real-world applications, the welded beam desi constraints is infeasible.

MOP [27]. It is a widely-studiedconstrained optimization ALP learns the Pareto front of the welded beam MOP by

problem, consisting of the design O.f a beam that 1S Weld%‘ansidering the end deflection objective as a functiaf the
onto another beam to carry a certain load. In particular, the objective £). The domain ofg is [2/2, =], with the

]Spomt) (Ijoa? tﬁon:sts ofrra: forcf‘h: 6000 t|_b ath":ﬁ Otr)] the valuesz!P = 2.381 and z{ = 36.421 of the Ideal and Nadir
ree end ot tn€ beam. The overhang portion of the bearm nts, respectively, taken from paper [34].

z Iengttrr:. Okf 14§int(;]h. tl): our dggitiophvaria:téltlas a'[fi def(ijn;ahd: teThe best Pareto front model oval runs recovered by ALP
eam fhickness, tne beam widlli, the weid 1engtil, and IN€ - v iuniy 5000 function evaluations is depicted in Figure 12 (left).

weld thicknessh. The geometry and the loading condition o he “true” Pareto front, obtained by enumeration, is sholed

Ef;e biam ?hre shoyvgl n F|g£ ll'_ bil ). th bl a dotted line, while the solid line represents the ALP approx
€no |tng f f? &/grlathe veg Okl N (f.’ ) 7t'géf i'pkruo €M mation. Figure 12 (right) presents the aggregate perfocean
consists ot finding the optima’ configuratioft Which Min-—oq,ts over 20 runs of ALP. The performance is measured

IMizes both th_e beam cost (first objectl\(éb(x)_) a_nd the by the root mean squared error (RMSE), which evaluates the
vertical deflection of the beam end (second objectfyéx)). difference between ALP approximation and “true” PF of the

The objectives are conflicting. In fact, cost minimizatian iwelded beam problem. The curve is obtained by reporting

"We median RMSE values over the computational effort. The

to small values for all the four decision variables. Howevef -\ - o qenote the 2B-and the 75h percentiles. When

t_he smaller the bea_m_ dlmen5|ons,_ the larger the end de_ﬂﬁmcéreasing the number of function evaluations, the acquodc
tion tends to be. Minimum deflection at the beam end (i.

She PF approximation rapidly improves, until ALP converges

maximum rigidity of the beam) is obtained by increasing th, 5 piSE value lower thad x 10, Furthermore, afte500
values of the decision variables. The different trade-affng initial function evaluations, ALP results in less varidtyithan

the conflicting objectives can be obtained .by recoveriqg ﬂ?ﬁe more unstable performance observed withinsthieinitial
Pareto front (_)f the problem. The mathematical formulation function evaluations, confirming the efficiency of the aetiv
the problem is as follows: learning strategy

min  z; = fi(x) = 1.10471 h? [ + (26)
0.04811 ¢ b (14.0 + 1) o \;\lLliDI:ANDLIN(l.‘a( ZISCQENE(?TIESDPATIITTO FRONTT .
. - - 3 e ramework described in Sec. Ill assumes to known
T 2= F2(x) = 2.1952/(t" b) (@7) the domain of the functiort;, = ¢(z;) characterizing the

subject to 13600 — 7(x) > 0 (28) PF. In the case of bi-objective MOPs with connected PF
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Performance metrics (median values) evolution ovemtitaber of function evaluations. Error bars represent the 8Rata distribution. Figures
in rows one, two and three refer to MOH, F2, F3, respectively. Dashed lines plot ALP results, while solite$ depict MMEA performance.

characterized by, =

g(z1), this prior information can be concave parts). As a matter of fact, the PF is a subset of the
easily obtained by computing the componesit§ and 21" of

objective boundary and thus a model of the disconnected PF
the ideal and the Nadir point, respectively, or by asking thean be extracted straightforwardly by sampling the fumctio

decision maker for the interval of the interesting valueshef and keeping the non-dominated samples only (e.g., thegoint
objective z; .

lying in the concavities of the functioh are discarded). For

example, Fig. 13 (left) shows the feasible objective regibn
When the PF iglisconnectedthe functiong is discontinu- the ZDT3 problem, taken from the ZDT benchmark suite [28].

ous and its domain cannot be defined by a couple ofalues The boundary of the feasible region (gray-shaded areakis th
only. Therefore, assuming a priori knowledge of the domdin ¢hin black curve, consisting of both convex and concavespart

g is impractical. However, a disconnected PF can be identifigthe disconnected PF is depicted by the bold-marked portions
by learning a regression functionn = h(z;) approximating of the black curve.
the entire lower boundary of the feasible objective region,

including the dominated portions of the boundary (e.g., the When the ALP algorithm is used to learn the functibn
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Fig. 10. Performance metrics evolution over the number of fanatvaluations in the case of MCHS (row one),F6 (row two) andF7 (row three). Median
values with IQR error bars are reported. Dashed and sol&s ldepict ALP and MMEA results, respectively.

both dominated and non-dominated examples are needed. $akection procedure. This consists of a combined function,
former are in fact used to model the concave portions obtained summing up a periodic covariance functigrwith
the boundary (to be discarded when presenting the PF).drsquared exponential covariance functigr(see [6] for their
order to allow this, the dominance-based filtering diseaydi formulation). The rationale for the choice of functiep is
false Pareto-optimal training examples has to be switcliied dhe modelling of the concavities characterizing the boupnda
Otherwise, the learning phase may get stuck when trying abthe feasible area. The combination with functigrenables
model the concavities of the boundary, as other dominatiagdecay away from exact periodicity, as the boundary shape
training examples will likely be present in this case (seg EB is not expected to be exactly periodic. Furthermore, the
(right)). squared exponential covariance function models the smooth
trend characterizing disconnected Pareto fronts, whicthe

In order to model entire feasible region boundaries, amase of bi-objective minimization problems, are monotaltyc
additional functional form has been included in the set efecreasing piecewise continuous functions.
candidate covariance functions considered by the GP model
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Welded Beam problem. (Left) The best Pareto front@pmation (solid line) recovered by ALP with less th&A00 function evaluations. The

“true” PF is represented by the dotted line, overlappinchwite solid line. (Right) ALP performance measured by the RM8&&ugion over the function
evaluations number. Median values over 20 runs are repdetedr bars represent the interquartile range.
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(Left) ZDT3 problem. The boundary (black thin cunaf)the feasible region (gray-shaded area) contains bothesoand concave parts. The
disconnected PF is formed by the bold-marked curve segmenght{RVhen the query point (triangular marker on theaxis) does not belong to the domain
of g, the exactsolution of the scalarized program providing supervis€drimation generates an objective vect@rthat may be dominated by the current
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Let us note that this combined covariance function is nét Detailed results over the ZDT3 MOP

designed for a specific MOP, but is a general choice driven Bere are no discontinuities in the decision space of theZDT
the typical form of feasible region boundaries. Furthemnorproblem (in particular, the Pareto set is connected). ItssPF
we are not imposing this covariance function in the prig¥snyex, but disconnected. In particular, it is formed byfitie

GP, but only suggesting it to the model selection procedUiferent bold-marked curves in Fig. 13 (left). The forntita
as a candidate covariance function. The identification ef thf the ZDT3 problem is as follows:

covariance function (and its parameters setting) that fisst

(i.e., explains) the training data is performed by the model m)jn z1 = fi(x) =21
selection procedure. . A
= pr— 1 —_ —
No further modifications are required to adapt the ALP e f2(x) = 9(x) « S1(a)/g(x)
algorithm presented in Sec. VI to model disconnected PF. (f1(x)/g(x) * sin(107 f1 (x))]
subject to
VIII. CASE STUDIES WITH DISCONNECTEDPF g(x) =1+ 7@21) * ;xl

The ability of ALP in learning disconnected Pareto fronts is z; €[0,1],i=1...30

evaluated over four well known MOPs, ZDT3 [28], D99 [3],n running the NSGA-II algorithm, we use the specific param-
[35], TNK [36] and KUR [37]. The selected MOPs differeter setting for ZDT3 which is available with the code. Irsthi
from each other in several features. While ZDT3 has 3$tting, SBX and polynomial mutation are the operators for
decision variables, the decision space of both D99 and TNifossover and mutation, respectively. The distributiateies
is bi-dimensional and KUR has three decision variableﬁy both operators arg. = 15 and Nm = 20, respective|y_
The Pareto optimal solutions of ZDT3, D99 and TNK lierhe crossover probability i8.9 and the mutation probability
in a one-dimensional piecewise continuous manifold, whilg 1/n, wheren = 30 is the number of decision variables of
three dimensions are needed to represent the Pareto optipiaf3. A population of size 100 is used, while the algorithm
solutions of the KUR problem. Furthermore, in the case @fas been kept running until generation 200.
ZDT3, D99 and TNK the manifold formed by the Pareto- Twenty runs with different seeds are executed for both the
optimal solutions lies on the boundary of the decision spacg p and NSGA-II algorithms. The convergence to the Pareto
while the Pareto optimal solutions of KUR are located aroungbnt of the problem is depicted in Fig. 14. In particular,
the center. The shape of the PF also varies among the MQRS left (right) graph reports the evolution of the IGDF
considered. For example, the PF of ZDT3 is formed by fiv@H~) metric over the number of function evaluations. The
convex curves, while those of D99 and KUR are representgélshed and solid curves correspond to the ALP and NSGA-
by six non-convex curves and by three non-convex curves plysalgorithms, respectively. The curves denote the average
an isolated point, respectively. Finally, TNK differs frothe performance (median value over the 20 runs) of the algogthm
rest of the MOPs by being a constrained optimization problefghile the error bars plot the interquartile range (IQR) od th
The MMEA algorithm, which was used as touchstone idata distribution.
the experiments of Sec. VI, has been designed for connectedvithin 6000 function evaluations, the performance of ALP
Pareto fronts and cannot represent a fair ALP competitor ovgnd NSGA-II are comparable. However, when progressively
the four selected problems. ALP is therefore compared willicreasing the number of function evaluations fr6600 up
the popular state-of-the-art genetic algorithm NSGA-I8][3 to 20000, the quality of the ALP model improves more rapidly
We used the original NSGA-II code provided by the authot®an that of the NSGA-Il one. This behavior is observed
(version1.1.6). for both the performance metrics reported. In detail, ALP
The experimental results detailed in the rest of this sactiperformance converges to an IGDF value less tttar?, about
show that the ALP algorithm outperforms NSGA-II over th@ne order of magnitude better than that of NSGA-II. An even
ZDT3, D99 and TNK MOPs, while it fails in learning anmore pronounced behavior is observed for the Ihhetric,
accurate model of the KUR PF. A cross-over point is observadhere ALP performance is about two orders of magnitude
when comparing the algorithms over the TNK MOP. As Aaetter.
matter of fact, within 6000 function evaluations ALP con- The sample percentiles denoted by the error bars demon-
verges much faster than NSGA-II to a reasonable PF modgttate a stable behavior of the NSGA-II algorithm. The vari-
More than 12000 function evaluations are instead neededataility of ALP results is comparable with the dispersion fod t
observe NSGA-II performance exceeding ALP performancBSGA-II samples, with the exception of the values observed
The failure of ALP learning process in the case of KUR MORt 8000 function evaluations. In this case, ALP data are more
is due to the noisy training dataset obtained when gengratumstable than NSGA-II results. The higher variability of AL
the supervised information. ALP can however detect thmerformance is due to the GP model selection procedure,
suboptimal behavior, by observing the predictive uncetyai which in some occasional ALP runs at 8000 evaluations
of the GP model, which does not decrease when increasijgnerates a model over-fitting the training data. A similar
the number of learning iterations. In particular, the pcédé but less pronounced (variance halved) phenomenon is still
uncertainty remains exceptionally high also in regionshaf t observed at 10000 function evaluation in terms of the IH
regression domain densely populated by training examplesmetric (Fig. 14, right). When increasing the number of tnagni
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Fig. 14. Performance metrics (median values) evolution overntiimber of function evaluations observed in the case of ZIEFRr bars represent the
IQR of data distribution. The dashed line plots the ALP ressulvhile the solid line shows the NSGA-II performance. In t&f graph, the performance is
measured by the IGDF metric, while the right graph plots the lidetric evolution.

examples (and thus the number of functions evaluations)jraexes for both operators arg = 20 andn,, = 20, respec-
GP model that fits the data is learnt in each run of ALP aritvely. The crossover probability i6.9, while the mutation
a high-quality PF approximation is obtained. probability is 1/n, wheren = 2 is the number of decision
Finally let us note that the combined covariance functionariables of the problem. The population size is set to 100,
involving a periodic component and an exponential decrefiseand the non-dominated individuals in the tenth generation
the input correlation with the input distance, was sele€#é¥% (obtained by performing 1000 evaluations of the objective
of the times by the model selection procedure, confirming theectorz) are used to approximate the PF.
more informative prior information improves the performan  The convergence to the Pareto front of both the ALP
of Gaussian process regression. and NSGA-II algorithms is depicted in Fig. 17, reporting
the evolution of the IGDF (left graph) and the TH(right
) graph) metrics over the number of function evaluations. The
B. Detailed results over the D99 MOP dashed and solid curves plots the average performancegdmedi
The second benchmark with disconnected PF is one of theue over 20 runs) of the ALP and NSGA-II algorithms,
main classical unconstrained MOPs described in [3] amdspectively, while the error bars plot the interquartéege
originally introduced in [35]. It consists of two real deiois (IQR) of the data distribution.
variables, taking values in the rangfe 1]. The optimal solu-  The superior performance of ALP w.r.t. NSGA-II observed
tions lie in the boundary of the decision space, and both 8e Rr ZDT3 is confirmed. For both performance metrics, the
and the PF are disconnected. In detail, the MOP formulatiguality of the PF approximation returned by ALP rapidly

is defined by the following equations: improves after 300 evaluations, converging to a value &mall
) than10~% after 600 evaluations. On the other hand, after 1000
min z1 = fi(x) = m objective function evaluations the performance of NSGA-
min 29 = fao(x) = g(x) * h(x) Il is still about five orders of magnitude worse than ALP
subjec’? o performance. A stable behavior is observed for both algrst
when increasing the number of function evaluations.
9(x) =1+ 10z, Fig. 16 compares the PF model learnt by ALP (left) w.r.t.
h(x)=1-— (J;l((x")))@ - J;l((x")) % sin(2mqf1 (x)) the approximation generated by NSGA-II (right) when 500
2, €[0,1],i=1...2 function evaluations are performed (and ALP performance

is converging). Only nine over the 100 individuals of the
The component(x) is a parametric function with parameterdfNSGA-Il population are non-dominated, and only a couple
a and g. According to the setting used in [3], in our worlof them is Pareto-optimal (the IGDF value is equal0td0).
the parametersy and g assume the values two and siXPn the contrary, by interpreting and selecting an inforueati
respectively. The parameter g defines the number of discregt of training data, ALP has recovered an accurate PF model

PF curves in a unit interval of;. Therefore, asf;(x) = (asterisk-marked line, overlapping with the solid line dtémg
x1 € [0, 1], the PF consists of six disconnected curves (Fig. 16e PF), corresponding to an IGDF value lower tHar>.
(left)). Finally, as for the ZDT3 problem, the combined covariance

To tackle the D99 MOP, the default setting of the NSGAfunction including a periodic component was selected more
Il algorithm suggested in the original NSGA-II paper [39] ighan the 95% of the times by the model selection procedure
adopted, with SBX and polynomial mutation being the operaf the ALP algorithm. This result is consistent with intotti,
tors for crossover and mutation, respectively. The digtiitm when observing the boundary of the feasible objective space
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in Fig. 15 (left). D. Detailed results over the KUR MOP

The Pareto set of Kursawe's MOP [37] (KUR) consists of

_ several disconnected and asymmetric areas in the decision
C. Detailed results over the TNK MOP space. The PF is formed by three non-convex disconnected
Tanaka’s constrained MOP [36] (TNK) has two objectivesurves (Fig. 20 (left)). The formulation of the problem cists

and a couple of non-linear constraints. The decision spagkthe following equations:

coincides with the objective space (thus the Pareto setlialeq
to the Pareto front). The formulation of the problems is as

min  fi(x) = Z?;ll(floe(—o'%/w??%))

follows: min  fo(x) = S0 @[ + 5sin(a?)
min fi(x) = x4 S.t. 0<z;<5,1=1,2,3
m)in fa(x) = 22 For this problem, the sequential quadratic programming-alg
St (21)2 4+ (22)2 > 1+ 0.1 % cos(16 arctan(Z1)) rithm [30], [31] used by ALP to gen.erate tralr.nng.examples
e Lo 1 2 (Eq. (3)) returns extremely poor-quality approximatiofishe
(x1=3) + (22— 3)" <3 Pareto optimal solutions. Based on this very noisy training
O<xi,20<m information, an accurate PF model cannot be recovered.

Figure 20 (right) shows the training examples (squares)

Each Pareto-optimal solution lies on the first constrainiriatb  at the 30th refinement iteration during a single run of ALP.
ary. The non-convex (partial convex and concave shape) aéte the large amount of noise affecting training examples
disconnected PF is depicted in Fig. 15 (right). for zz > —17. In this scenario, ALP cannot provide an

In our experiments, we employ the specific setting of theccurate approximation (solid line in figure) of the PF (ddtt
NSGA-II parameters for the TNK problem available with thdine). However, ALP can easily realize the poor quality of
original NSGA-II code. The distribution indexes for the SBXhe learned model by measuring its predictive uncertainty,
crossover and the polynomial mutation operators iare=  which is exceptionally large also in regions densely pojaa
5 and 7, = 5, respectively. The initial population of sizeof training examples. The ALP framework is not bound to
200 is allowed to evolve for 300 generations, with crossover specific optimization algorithm for recovering supemisi
probability set t00.9 and mutation probability equal t@.5. on training examples (Eg. (3)). Alternative approachestman

Fig. 18 reports the performance of ALP and NSGA-II oveexplored when the current choice does not provide accurate
this problem. The quality of the PF approximation returngd bresults, e.g., Gaussian Processes for global optimiz§ioh
ALP converges to the IGDF value d@&—3 within 6000 func- An advantage of using GP would be a substantial reduction in
tion evaluations. When considering a bounded computatiorthé number of function evaluations for solving Eq. (3), thus
budget of 600 up to 6000 function evaluations, the resulfigrther reducing the overall number of function evaluasiarf
by NSGA-II are from two up to five times worse than ALPALP (see Discussion). Another possible countermeasure con
performance. However, after 12000 function evaluatiohs, tsists of inverting dependent and independent objectives, i
rank of the algorithms changes, with NSGA-II asymptotigallconsidering the objective; as a function oks (21 = g(22)),
dominating ALP. As a matter of fact, ALP learns a reasonabtather than the other way around, in case this results in a
approximation within much fewer function evaluations thasimpler optimization task.
NSGA-II, but it misses a small portion of the PF located
in the interval [0.9,1] on the x-axis (see Fig. 19 (middle
left)). This weakness is due to the poor quality of the tragni
examples generated in the interval considered. On the otherorder to learn a model of the PF, ALP generates training
hand, NSGA-II reaches a uniform spread of the individuakxamples in the regression domain. However, generating su-
of the population over the whole PF, but at a computationpérvised information is expensive, as it involves the eatdun
cost sensibly larger that the number of function evaluatioof the objective functions of the MOP. In order to decrease
performed by ALP at convergence. For example, Fig. 19 (tdpe computational cost of the learning process, the nextyque
left) shows a sample PF model recovered by ALP employingstance selected by ALP is the poigf in the regression
600 function evaluations. The top right graph reports thdomain maximizing the predictive uncertainty of the ledPht
approximation of the PF generated by NSGA-II with the sanmeodel (uncertainty sampling). The adoption of the uncetyai
computational budget. The middle graphs show the PF gengampling principle motivates the choice of the GPR method,
ated by ALP (left) and NSGA-II (right) when ALP convergeswhich can quantify the uncertainty of the predictive model.
The NSGA-II has not recovered portions of the second, third The following experiments test the efficiency of the uncer-
and fourth disconnected PF components (numbering from l&dinty sampling (UNC) principle, by comparing it with an
to right) which ALP has accurately modeled. Finally, thepdra alternative query selection strategy. The competing ntetho
at the bottom reports an example of the accurate approxdmatconsists of picking the query points uniformly at random
obtained by NSGA-Il wheré x 10* function evaluations are within the regression domain. The random selection priacip
performed, improving the sub-optimal approximation shdwgRND) is less informed than the UNC method, as it does
in the middle right graph. not exploit the learnt PF model. However, the RND principle

IX. EFFICIENCY OF UNCERTAINTY SAMPLING
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Fig. 18. Evolution of the IGDF and IH performance metrics over the number of function evaluatiorsnvgolving TNK. The data are presented analogously
to that in Fig. 17, with the exception of the logarithmic xdscased to represent both the early ALP convergence with@0&¥aluations and the crossover
point of the performance located after 12000 evaluations.

provides a robust approach w.r.t. the general shape of the Rfited amount of supervised information generated by few
thus representing a nontrivial competitor in our settings. training examples, either selected passively (i.e., atlgar)

Fig. 21 reports the performance of both the UNC and RN®' actively, does not enable the learning of the PF. However,
sampling principles when increasing the number of quelhen a larger number of training instances is consideres, th
points to solve ZDT3 (top left graph), D99 (top right) and TNKUNC strategy yields better results than using the less iméar
(bottom graph). The dashed and solid lines refer to the UNRND method. Finally, the UNC results are more stable than
and the RND strategies, respectively. For both strategies, the RND results, as clearly showed by the error bars.
hundred runs of ALP are performed, with different random
seeds. Median values of the IGDF metric over the different ) )
runs are plotted, together with error bars denoting theh25-t ' 1€ tOP right graph refers to the D99 MOP. The previously
and the 75-th percentiles. Since different stochastic mmpobs_er\_/ed be_ha\_/l_or IS gonﬂrmed. In particular, there is no
nents are involved in the ALP framework, the results of Olﬁianstlcally S|gr_nf|cant difference among the RND and UNC
comparative study are provided with statistical confidemce performapqe with ten (or less) training examples. When 1.5
particular, multiple pairwise comparisons among the UNG ar?’ ZO_tralnlng examples are used, the RND performance is
RND samples are performed, one comparison for each of ﬂgtlstlcally betterth_4 e )
different number of query points considered. The Kolmog;orop'values equal tale™ and 1e™", respectively. However, a

Smirnov (KS) test for two independent samples is used, withPgPeror asym_ptoﬂc perform_ance of the UNC meth(_)d over the
Bonferroni-corrected significance leval/c, wherea = 0.05 RND strategy is observed with large statistical confidetioe:

and ¢ — 9 is the number of comparisons performed. Th8rder of magnitude of the p-values is lower than or equal

—20 i i
Bonferroni procedure is known to be conservative, espgcia?o le when gh,e nhumber of query points is Iarggr than :,30
(the p-valuele™® is observed for 25 examples). This result is

for highly correlated test statistics. That is, it tends t@re ' . T . )
protect from type-| errors at the cost of a lower preventio?l(_)ns'Stent with the qualitative insights provided by thapjrrs_.

of type-Il errors. However, in our settings, type-| errorg.( with more than 25 examples the RND and UNC locations

erroneously stating a different performance among the e clear!y qlfferent and the error bars do not overlap. The

sampling strategies) are considered worse than type{brserrasymptonc d!ﬁergnce among the performance of the RND and
(i.e., falsely considering equivalent the performance  UNC strategies is even more pronounced that that observed
strategies) for ZDT3. The more complicated shape of the D99 PF, which

, L consists of six non-convex disconnected curves w.r.t. tree fi
For ZDTS3 (top left graph), with ten (or less) training EXaMeonvex components of the ZDT3 PF, is a likely explanation
ples, the UNC and RND strategies are statistically equital

. ; A%or this behaviour.
under a Bonferroni-corrected KS test. With 15 query points,

there is statistical evidence for better results by the RND

method (the p-value i6.003). However, when increasing the  The experiments over TNK confirm the better performance
number of training examples, the UNC strategy keeps improyf the UNC strategy, whose curve dominates the curve corre-
ing faster than the RND strategy and significantly outpenor sponding to the RND technique. As for D99, with 10 and 15
it if 25 or more query points are generated. With more than 2&ining examples there is no significant difference betwtbe
examples, the order of magnitude of the observed p-values\ip strategies. However, with more than 15 training exasiple
lower thanle~'*, providing strong evidence against the nulynC significantly outperforms RND: the p-values lower than
hypothesis of equivalent performance. 1e—% provide strong support for the superiority of the UNC
The observed behavior is consistent with intuition. Theampling strategy.
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Fig. 19. (Top left) Sample PF model (asterisk-marked curvejrned by ALP after 600 function evaluations (Top right) Saengiscrete PF approximation
obtained when running NSGA-II with the same computationalgetdThe non-dominated individuals in the current NSGA-Ihgtion are shown by the
cross-marked points. (Middle left) Sample PF model returnedlby at convergence, missing a portion of PF disconnected coemidocated in the interval
[0.9,1]. (Middle right) Sample discrete PF approximation by NSGA-titained when ALP converges. (Bottom) Sample PF approximatioiN8GA-II
requiring6 x 10* function evaluations.

X. DISCUSSION training examples becomes negligible. The informatiomgai
is estimated by the maximum predictive uncertainty of the

This work introduces the Active Leaning of Pareto frontearnt model in the regression domain.
(ALP) algorithm. While current state of the art algorithms fo
MOPs are developed within the Evolutionary framework, ALP ALP enables aranalytical representation for the PF, which
adopts a different strategy. Pareto-optimal objectivetarsc simplifies the decision making process. When the analytical
are generated by combining the active learning paradigim wRPF representation is available, the decision maker (DM) is
the solution of a scalarized optimization problem. The ®are free to select and compar@ny Pareto-optimal solution, in
optimal objective vectors recovered are used as trainiagnex particular within her preferred region. Once the favourite
ples to learn a model of the PF. The model is iteratively refind?areto-optimal vector is selected, an associated Paptitowa
until the information gain obtained by the new candidatsolution is generated by solving a single instance of the
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