
DISI - Via Sommarive, 5 - 38123 POVO, Trento - Italy
http://disi.unitn.it

ACTIVE LEARNING OF PARETO
FRONTS

Paolo Campigotto, Andrea Passerini, Roberto
Battiti

January 2013

Technical Report # DISI-13-001

1

Active learning of Pareto fronts
Paolo Campigotto, Andrea Passerini, and Roberto Battiti

Abstract—This work introduces the Active Learning of Pareto
fronts (ALP) algorithm, a novel approach to recover the Pareto
front of a multi-objective optimization problem. ALP casts the
identification of the Pareto front into a supervised machine
learning task. This approach enables an analytical model of the
Pareto front to be built. The computational effort in generating
the supervised information is reduced by an active learning
strategy. In particular, the model is learnt from a set of infor-
mative training objective vectors. The training objective vectors
are approximated Pareto-optimal vectors obtained by solving
different scalarized problem instances. The experimental results
show that ALP achieves an accurate Pareto front approximation
with a lower computational effort than state-of-the-art Estimation
of Distribution Algorithms and widely-known genetic techniques.

Index Terms—Multi-objective optimization, Gaussian process
regression, active learning, uncertainty sampling.

I. I NTRODUCTION

REAL-world optimization tasks usually require the op-
timization of several conflicting objectives: a solution

simultaneously optimizing all of them does not exist. There-
fore, the solution to the multi-objective optimization problem
(MOP) becomes the quantitative identification of trade-offs
between the multiple objectives. The trade-offs between the
competing objectives are captured by thePareto-optimalso-
lutions, for which any single objective cannot be improved
without compromising at least one of the others.

The set of the Pareto-optimal solutions in the decision space
(Pareto set or PS) and of the corresponding objective vectors in
the objective space (Pareto front or PF) typically have a large
or even infinite cardinality, as it is the case for continuous
problems. In these cases, the typical solution consists of an
approximation of the Pareto set (Pareto front) by a finite
number of representative solutions (objective vectors). The
better the approximation of the Pareto front, the better the
choice of the favorite compromise between the objectives that
is offered to the decision maker.

The traditional approach to obtain a finite set of Pareto-
optimal solutions (and the corresponding images in the PF)
involves the sequential generation and solution of scalarized
instances of the MOP. Scalarization [1], [2] consists of trans-
forming the original MOP into asingle-objective optimization
problem (SOP). The generated SOP is a parametric combi-
nation of the multiple objectives of the original MOP into a
single objective. This combination may involve the generation
of additional constraints not included in the original MOP.
Different Pareto-optimal solutions can be obtained by appro-
priately varying the scalarization parameters. The generated

P. Campigotto, A. Passerini and R. Battiti are with the De-
partment of Information Engineering and Computer Science, Univer-
sity of Trento, Via Sommarive 14, I-38123 Povo, TN, Italy. E-mail:
{campigotto,passerini,battiti}@disi.unitn.it.

SOP can be solved by applying common methods and widely
developed theory for single-objective optimization. However,
scalarization-based methods are usually sensitive to the shape
or continuity of the Pareto front [3]. For example, non-convex
parts of the Pareto front cannot be recovered by optimizing
convex combinations of the objective functions.

Rather than relying on scalarization techniques, current state
of the art approaches for MOPs are represented by the Evolu-
tionary Multi-objective optimization algorithms (EMOAs)[4],
which are less susceptible to the shape of the Pareto front,
handling, e.g., discontinuous or concave shapes. EMOAs are
heuristic techniques generating an approximation of the whole
PF in a single run and without using any derivative (i.e., gradi-
ent) information. The approximation is obtained by repeatedly
improving a set of candidate solutions in the decision space
(referred to as “population” within the Evolutionary metaphor)
until their images in the objective space have converged to
the PF. However, neither the convergence to the PF, nor, in
case of convergence, a uniform distribution of the population
over the PF are guaranteed. Furthermore, the performance is
typically sensitive to the setting of the algorithm parameters
(e.g., population size, number of iterations, genetic operators
parameters), whose tuning depends on the specific problem
instance being solved.

The Active Learning of Pareto fronts algorithm introduced
in this paper is different from existing EMOAs. Because the
PF has infinite cardinality in the case of continuous MOPs,
ALP generates ananalytical representationof the PF, rather
than an approximation by a finite and preset number of points.
An analytical representation of the entire Pareto front may
significantly improve the decision making process, particularly
when the preferences of the Decision Maker (DM) cannot be
stateda priori. The compact analytical representation of the
PF offers to the DM the possibility of visually inspecting the
front, and of focusing on the preferred regions and selecting
the favorite solution̂z, as the desired compromise between
the different objectives. ALP can then identify the solution in
the decision space corresponding toẑ. With a large number
of objectives, dimensionality reduction techniques [5] may be
employed to enable the investigation of the learnt analytical
PF representation in a three or two dimensional visualization.

The ALP algorithm generates the analytical PF represen-
tation by learning a model of the PF from atraining set
of approximated Pareto-optimal vectors, which are obtained
by solving different SOP instances. In order to minimize the
computational effort (measured as number of evaluations of
the MOP objective functions), informative training objective
vectors are selected by applying active learning principles
(AL). In particular, the learning stage is accomplished by
Gaussian process (GP) regression [6], as it provides an explicit
measure of predictive uncertainty that can be used to guide

2

the selection of the training examples (active learning by
uncertainty sampling [7]). The adoption of the AL paradigm
also favors theanytimeproperty: when increasing the number
of function evaluations, the accuracy of the analytical PF
representation improves. Furthermore, the GP method offers
a natural termination criterion for ALP: when theinformation
gain obtained by including any additional training example is
negligible, the algorithm stops. The training objective vectors
are generated by solving different instances of a scalarized
optimization problem. ALP does not require any derivative
information and is a generic framework: neither the ML
method learning the PF model, nor the AL principles and the
optimization techniques for solving SOPs instances are limited
to the ones discussed in this paper.

Let us note that there are two possible connections between
machine learning and multi-objective optimization. The first
connection arises because machine learning problems contain
challenging multi-objective optimization tasks, from general
cases like the trade-off between intra-cluster similarityand
inter-cluster dissimilarity in clustering problems, to specific
cases such as, reinforcement learning problems with multiple
conflicting reward functions [8], [9]. The second connection,
implemented by our work, goes in the opposite direction: it
uses learning techniques from the machine learning commu-
nity to solve the general multi-objective optimization problem.

The next Section describes the problem settings assumed
in this work. Details of the ALP algorithm are provided
in Sec. III, while Sec. IV describes the Gaussian process
regression technique used to model the Pareto front. Related
work is discussed in the following section. An experimen-
tal comparison between ALP and state-of-the-art EMOAs is
reported in Sec. VI, while the ability of ALP in learning dis-
connected Pareto fronts is evaluated in Sec. VII and Sec. VIII.
The experiments in Sec. IX validate the choice of the active
learning strategy based on the predictive uncertainty of the
GP regression model. Finally, possible generalizations ofALP
and interesting directions for future research are discussed in
Sec. X.

II. PROBLEM SETTINGS

The ALP algorithm introduces a new strategy to tackle multi-
objective optimization problems (MOPs). In this Section, we
give the formal definition of the MOP, specifying the termi-
nology used throughout the paper, and define the properties of
the Pareto front which our algorithm relies on.

A. Multi-objective optimization problem

A multi-objective optimization problem (MOP) is formulated
as:

min
x

f(x) = {f1(x), . . . , fm(x)} (1)

subject to x ∈ Ω

wherex ∈ R
n is a vector ofn decision variables;Ω ⊂ R

n

is the feasible regionand is typically specified as a set of
constraints on the decision variables;f : Ω → Φ ⊂ R

m is made

of m objective functions which need to be jointly minimized.
Objective vectors are images of decision vectors and can be
written asz = f(x) = {f1(x), . . . , fm(x)}. Problem (1) is ill-
posed whenever objective functions are conflicting, a situation
which typically occurs in real-world applications. In these
cases, an objective vector is considered optimal if none of
its components can be improved without worsening at least
one of the others. An objective vectorz is said todominate
z′, denoted asz ≻ z′,if zk ≤ z′k for all k and there exists at
least oneh such thatzh < z′h. A point x is Pareto-optimal if
there is no otherx′ ∈ Ω such thatf(x′) dominatesf(x). The
set of Pareto-optimal solutions is calledPareto set(PS). The
corresponding set of Pareto-optimal objective vectors is called
Pareto front (PF). The ideal objective vector represents the
best value of each objective. It is generally infeasible andis
obtained by separately minimizing each objective functionin
the feasible region, i.e.,zIDk = minx∈Ω fk(x). Analogously,
the worst objective vector contains the maximum possible
value of each objective over the entire search space. Another
notable vector in the objective space is theNadir point, whose
k-th component is the maximum value of the k-th objective
among all the Pareto-optimal vectors:zNk = maxx∈Ω∗ fk(x),
where Ω∗ ⊂ Ω is the set of the Pareto-optimal solutions.
The ideal and Nadir points define the range of values that
the Pareto-optimal objective vectors may attain.

B. Assumptions

Under mild smoothness conditions, the Pareto front of contin-
uous MOPs is an(m − 1)-dimensional piecewise-continuous
manifold [1], [10], [11], withm being the number of objec-
tives. The dominance relation defined in the objective space
enables a further characterization of the PF by expressing
an arbitrary objectivezd (dependent function variable) as a
function of the remaining objectiveszI (independent function
variables):zd = g(zI). Without loss of generality the m-th
objective of a m-objective problem is considered the dependent
objective, i.e.,zm = g(zI), with zI including objectives
zi, i = 1, . . . ,m− 1.

In this work, we focus on bi-objective optimization prob-
lems, where the PF is characterized by the continuous function
z2 = g(z1). The only assumption of ALP is the knowledge of
the domain ofg. When the PF is connected, the domain ofg
is completely specified by a lower and an upper bound point.
While the lower bound can be easily obtained by computing
the valuezID1 of the ideal point, the upper bound can be
specified by the decision maker herself, which is often aware
of a critical threshold defining the set of interesting values for
a given objective. When the decision maker cannot provide
the desired information, the upper bound defining the domain
of g is represented by the valuezN1 of the Nadir point, which,
in the case of bi-objective problems, can be computed exactly
(see Fig. 1). In fact, in the case of bi-objective optimization
problems, each component of the Nadir point is obtained from
the Pareto-optimal objective vector containing the ideal value
for the other component. Therefore, the componentzN1 can be

3

determined by solving the following program:

zN1 = min
x

f1(x) (2)

subject to f2(x) = zID2

x ∈ Ω

For MOPs with more than two objectives or bi-objective MOPs
with a disconnected PF, the domain of functiong cannot
be defined by just a couple of (user supplied) points. In
Sec. VII, our approach is generalized to bi-objective MOPs
with disconnected Pareto fronts, where the a priori knowledge
of the domain ofg is an impractical assumption. Finally,
Sec. X outlines a possible generalization of ALP to tackle
MOPs with a number of objectives larger than two.

III. T HE ALP ALGORITHM

Our approach casts the MOP into amachine learning task:
given a training set of approximated Pareto-optimal vectors,
the PF is identified by learning a model explaining the training
data. In particular, as the PF is an (unknown) continuous
functionzm = g(zI), the learning task is naturally formulated
as aregressionproblem in the objective space. In particular,
the dependent objectivezm of functiong and the independent
objectiveszI constitute the target variable and the input feature
vector of the regression task, respectively. Let us assume that
both a set of training vectors and a supervisor, which provides
the valuezm for each of the vectors, are available. The target
of the learning task is a modelg̃ which, given a new vectorzI ,
returns the estimated valuẽzm of the target variablezm. Model
g̃ provides the analytical representation of the PF returned by
ALP.

Given an initial setT of training examples in the form
(zI , zm) (initialization phase), ALP iteratively learns̃g (refine-
ment phase). Each refinement iteration consists of training the
model g̃ on the current training setT and, based on the learnt
model, selecting a new training vectorẑI . The new training
example(ẑI , ẑm), whereẑm is the supervised information, is
included inT . The update of the training setT completes the
refinement iteration.

The pseudo-code of ALP is in Fig 2. In the following, we
provide the details of the algorithm.

1) Initialization phase. The initial training setT is gen-
erated by selectingv vectors uniformly at random within the
feature spaceS of the regression task, spanned by them− 1
independent objectiveszI . Supervised information for each
selected vector is generated.

2) Refinement phase (active learning).Training examples
generation is expensive, as computing the supervised informa-
tion involves the evaluation of the objective functionsf of the
MOP. In order to minimize the number of training examples
without affecting the accuracy of the learnt model, training
inputs are selected by theuncertainty samplingprinciple [7].
At each refinement iteration, the new training input is the
feature vector̂zI in S whose prediction the current model
is most uncertain. The couple(ẑI , ẑm), with ẑm being the
supervised regression score, is considered themost informative
training data for the current model.

Given the training setT , the model̃g approximating the PF
is learnt by applyingGaussian processregression (GPR). This
choice is motivated by the ability of GP learners in quantifying
prediction uncertainties, which enables a suitable application
of the uncertainty sampling principle. GP learners providea
Gaussian distributionN (µ(z̄I), σ(z̄I)) of the values predicted
for any single test input̄zI . The meanµ(z̄I) of the predictive
distribution can be interpreted as the predictionz̃m of the GPR
model g̃ when applied on test input̄zI , while the variance of
the distribution quantifies the confidence of the model about
the prediction. Large variance means that the test sample is
not represented by the model learnt on the current training
examples. Therefore, the point̂zI in S maximizing σ(zI)
is used to generate aninformative training example for the
current model̃g. A detailed description of GPR including all
aspects relevant to our algorithm is reported in Section IV.

3) Supervised information generation.Supervised infor-
mation consists of the value of the dependent objectiveẑm for
a given input feature vector̂zI . The couple(ẑI , ẑm) constitutes
a training example. The valuêzm is obtained by solving the
following mathematical problem:

min
x,ǫ

fm(x) (3)

subject to

fj(x) = ẑj + ǫj , j = 1, . . . ,m− 1,

|ǫj | ≤ 10−2

x ∈ Ω

where Ω ⊆ R
n identifies the feasible region of the MOP.

Let x̂ be the solution of problem (3). Then,̂zm = fm(x̂).
The objective vector̂z = {ẑI , ẑm} is Pareto-optimal. Slack
variables ǫj in problem (3) relax the equality constraints
fj(x) = ẑj . Equality constraints relaxation is introduced to
solve instances of problem (3) suffering from the presence of
local minima. When|ǫj | > 0 for at least one value of indexj,
the new training input is a point̃zI in the neighborhood of̂zI .
As position z̃I is located in the region where the predictive
uncertainty is higher, it represents an informative query point.
The tolerance value of10−2 in problem (3) is in general related
to the input range and to the objective functions, the value of
10−2 is adequate for all benchmark problems (and the results
are very robust with respect to this choice).

4) Dominance-based filtering.When the solution of prob-
lem (3) is anapproximationx̃ of the Pareto-optimal solution
x̂, anoisytraining example(z̃I , z̃m), with z̃m = fm(x̃) > ẑm,
may be generated. Therefore, when new training examples
are included in the training setT , a “dominance check” is
performed to detect and remove training examples which are
dominated by the new training examples.

5) Termination criterion. The ALP approach is a general
framework to solve MOPs, enabling different termination
criteria. A simple one is provided by the AL paradigm. When
the information gain obtained fromany additional training
example is negligible, the accuracy of the learnt PF model
is not expected to improve in a significant manner, and
the algorithm stops. The information gain is estimated by
the uncertainty of the model about its predictions for the

4

Fig. 1. Bi-objective minimization problem. The gray-shaded area denotes the feasible objective space, with the PF being depicted by the bold-marked curve.
The ideal and Nadir points bounding the PF are highlighted.

1. procedure ALP
2. input: multi-objective optimization problem
3. output: analytical PF representation
4. Let S the feature space of the regression task

5. /* Initialization phase */
6. Selectv training inputszI uniformly at random inS
7. Generate regression scorezm for each training input by solvingv instances of problem (3)/* Supervision */
8. Initialize training setT by thev instances(zI , zm)
9. Remove dominated training examples fromT /* Dominance-based filtering */
10. /* Refinement phase */
11. do
12. Train GP regression model on setT /* Modeling */
13. Select most informative training input̂zI /* Active learning */
14. Generate regression scoreẑm for ẑI by solving problem (3)/* Supervision */
15. Include training example(ẑI , ẑm) in T
16. Remove dominated training examples fromT /* Dominance-based filtering */
17. until (termination criterion)
18. return learnt GP model/* Analytical PF representation */

Fig. 2. Pseudo-code for the ALP algorithm generating the analytical PF representation by iteratively refining the learnt GP model.

candidate training examples. Alternative termination criteria
for the iterative learning process include a limit on the number
of refinement iterations or an upper bound on the number of
evaluations of the MOP objectives (limit on the computational
effort).

6) Computational complexity. The computational com-
plexity of ALP is dominated by the GP training, which
takes timeO(|T |3) (see Sec. IV). However, because of the
limited number of training examples that can be used by ALP
to efficiently recover the PF, the GP training is completed
in a negligible amount of time. Furthermore, in real-world
MOPs, the run-time bottleneck is typically represented by the
evaluation of the objective functions. The fitness computation
may involve, for example, time-consuming experiments or
simulations. In some real-world cases, the analytical formu-
lation of the fitness surface may even not exist, e.g., when
one objective is the optimization of quantitative judgments
provided by the decision maker.

Training the GP does not require the evaluation of the

objective functions, which is instead needed by the generation
of the training scores (Eq. (3)). Therefore, the computational
cost of ALP corresponds to the effort spent in generating the
supervised information.

IV. GAUSSIAN PROCESS REGRESSION

The ALP algorithm learns an analytical approximating of
the PF by applyingGaussian processregression (GPR) [6],
[12]. This choice is motivated by the ability of GP learners
to provide an explicit uncertainty model for the individual
predictions, therefore enabling a suitable application ofthe
uncertainty sampling principle [7]: an input on which the
current learner has maximum uncertainty is selected as new
training example.

In this section we describe the regression based on Gaussian
processes. First, we show how the traditional regression task
is tackled by using Gaussian processes and elucidate the
components (i.e., the mean and covariance functions) needed
to completely specify a GP regression model. Subsection IV-B

5

details the Gaussian noise model assumption and describes
how to make predictions from a trained Gaussian process.
The training (i.e., learning) of a GP model is explained in
Subsection IV-C. It consists of selecting a functional formfor
the mean and the covariance functions and of tuning their
parameters, together with the Gaussian noise variance, to fit
the current data. In particular, we focus on model selection
by likelihood maximization, discussing also its computational
complexity. Finally, we show how GPR enables a sound
application of the uncertainty sampling principle. A summary
of the GPR features concludes the section.

A. Gaussian process model

The traditional regression task consists of estimating a latent
functiong(x) from a noisy training datasetT = {(xi, yi), i =
1, . . . , |T |}. Figure 3 (left) depicts an arbitrary single-valued
latent functiong(x) and a couple of training observations
(|T | = 2). A Gaussian process (GP) is a collection of random
variables, any finite subset of which have consistent joint
Gaussian distributions. The consistency requirement means
that the distributions of any finite subset of random variables
satisfies the marginalization property. That is, the joint distri-
bution of any finite subset of random variables is obtained
from the joint distribution of any arbitrary superset of the
original subset by marginalizing out the additional variables
(e.g., p(v1) =

∫

p(v1, v2) dv2, where v1 and v2 are two
random variables).

When a GP is used to model the regression task, the random
variables represent the values of the latent functiong(x) at dif-
ferent locationsx. Therefore, the random (function) variables
can be indexed by the continuous functiong(x). In this paper,
gi denotes the random function variable associated with the
input xi which characterizes the possible values forg(xi).
By definition of GP,n arbitrary random function variables
g = {g1, g2, . . . , gn} have a joint Gaussian distribution:

p(g|X) = N (ḡ,K) (4)

whereX is the set of corresponding inputs (indexes),X =
{x1,x2, . . . ,xn}, andN (ḡ,K) denotes a multivariate Gaus-
sian distribution with mean vector̄g and covariance ma-
trix K. In Fig. 3 (right), the function variablesg1 and g3
characterize the possible values of the single-valued latent
function (dotted line) at locationsx = 1 andx = 3, respec-
tively. Both random variables follow a Gaussian distribution,
obtained by marginalizing their joint Gaussian distribution
p(g1, g3|{x1, x3}). Cross-marked points show the mean of
the Gaussians, corresponding to the unknown valuesg(1) and
g(3), respectively, while error bars denote the mean value +/-
three times the standard deviation (corresponding to the 99.7%
confidence interval).

A GP is aconditionalprobabilistic model. The distribution
p(x) on the inputs is not specified, and only the conditional
distribution p(g|X) is actually modeled. For notational sim-
plicity, in the rest of this paper the explicit conditioningon
the input is omitted, with the convention thatp(g) stands for
p(g|X), whereX represents the appropriate inputs where the
function variablesg are conditioned on.

A Gaussian process is completely specified by the mean
µ(x) and the covariancec(xi,xj) functions. The mean func-
tion is usually set to zero (bias and offsets can be sub-
tracted from the data without loosing generality), therefore
the definition of the GP reduces to the choice of the suitable
covariance function, which measures the similarity between
inputs x by computing the covariance among the function
variablesg associated with the inputs. The covariance matrix
K in Eq. (4) is calculated from the covariance function:
Ki,j = cov(gi, gj) = c(xi,xj).

A sample functionof a Gaussian process is a single real-
ization of each of its random variables. The joint Gaussian
distribution of the random variables defining a Gaussian pro-
cess induces a Gaussian distribution over sample functions.
The covariance function defines the properties of the functions
sampled from the GP (e.g., their smoothness, length-scale,
amplitude, etc.), which can be used as estimations ofg(x).
Therefore the covariance function incorporates theprior belief
(or bias) about the functiong(x) to model. Consider, e.g., the
squared exponential covariance function (often referred to as
radial basis or Gaussian covariance function):

c(xi,xj) = σ2
f exp(− 1

2l2
||xi − xj ||2) (5)

whereσ2
f is the “signal variance” which controls the order of

magnitude of the sample functions (i.e., the scale of the output)
and l defines the characteristic length-scale of the process,
which informally can be thought as “roughly the distance you
have to move in input space before the function value can
change significantly” [6], i.e., the distance in the input space
for the random function variables to become almost uncor-
related. The covariance cov(gi, gj) between variablesgi, gj
decreases as the distance between their corresponding inputs
xi, xj increases. Adopting the squared exponential covariance
function is equivalent to approximating the latent function
g(x) by a linear combination of an infinite number of Gaussian
basis functions [6], [13]. Furthermore, the squared exponential
covariance function generates infinitely differentiable func-
tions. Figure (4) contains five single-valued functions sampled
from a zero-mean GP with squared exponential covariance
function.

B. Gaussian process prediction

Gaussian process regression (GPR) assumes that the observa-
tionsyi = g(xi)+ǫ are affected by white noiseǫ, following an
independent and identically distributed Gaussian distribution
with zero mean and varianceσ2

n. For example, the observations
{y1, y3} depicted in Fig. 3 (left) are generated by settingσ2

n=
0.2. Let y = {y1, y2, . . . , y|T |}. Analogously to the symbol
p(g), in this paperp(y) is used as short notation forp(y|X),
whereX is the set of training inputs corresponding to the
observationsy.

GPR is aBayesianprobabilistic method. A Gaussian process
is used to express theprior belief about the functiong(x) to be
modeled,beforeconsidering any training observation. Anoise
model (or likelihood) is designed to link the observationsy
to the latent function. Bayesian inference can then be applied

6

0 1 2 3 4
−3

−2

−1

0

1

2

3

x

y

0 1 2 3 4
−3

−2

−1

0

1

2

3

x

f(
x)

Fig. 3. (Left) Traditional regression task. The single-valued latent functiong(x) is represented by the dotted line. Square-marked points represent a couple
of noisy training examples. (Right) GP model. The random variables g1 and g3, following a Gaussian distribution, characterize the possible values for the
latent function (dotted line) at locationsx = 1 andx = 3, respectively. See text for details.

0 1 2 3 4
−3

−2

−1

0

1

2

3

x

f(
x)

0 1 2 3 4
−3

−2

−1

0

1

2

3

x

f(
x)

Fig. 4. Five sample functions from a zero-mean GP with a squaredexponential covariance function withσ2

f
= 1, l = 0.5 (left) andσ2

f
= 1, l = 1.5

(right). In both plots the straight line represents the mean function of the GP and the shaded area is obtained by summing the point-wise mean function +/-
two times the standard deviation for each input value (corresponding to the 95% confidence region).

to make predictions from the available training examples and
the prior belief.

When using a Gaussian process, the joint distribution of
the latent function variablesg given the training inputsX is
a multivariate Gaussian:

p(g) = N (ḡ,K) (6)

with ḡ andK being the mean vector and the covariance ma-
trix, respectively. Equation (6) defines the prior for Bayesian
inference and the corresponding Gaussian process is referred
to asprior GP. The components of̄g are usually set to zero,
thus Equation (6) can be rewritten:

p(g) = N (0,K) (7)

Under the assumption of Gaussian white noise affecting the
observationsy, a suitable noise model is:

p(y|g) = N (g, σ2
nI) (8)

where I is the identity matrix. By integrating over the un-
observed function variablesg, the marginal likelihood (or

evidence) is obtained:

p(y) =

∫

p(y|g)p(g)dg = N (0,K + σ2
nI) (9)

The termmarginal refers to the marginalization overg. With
the prior (Eq. (7)), the likelihood (Eq. (8)) and the evidence
(Eq. (9)) components, Bayesian inference can be applied to
make a prediction on a test inputx∗. For this purpose, the
joint distributionunder the prior GPof the observed outputs
y and the unknown function valueg∗ = g(x∗) at the test
locationx∗ is derived:

p(y, g∗) =

[

y

g∗

]

= N
([

0

0

]

,

[

K + σ2
nI k∗

k′
∗ k∗

])

(10)

where k∗ = c(x∗,x∗) and the |T | × 1 vector k∗ contains
the covariancesc(xi,x∗) among the training and the test
inputs. MatrixK + σ2

nI is the covariance matrix of the noisy
observations, that is generated by simply adding the diagonal
matrix σ2

nI to the matrixK. In fact, under the additive,
independent and identically distributed noise assumption, the

7

covariance among observations is formulated as:

cov(yi, yj) = c(xi,xj) + σ2
nδi,j

where δ indicates the Kronecker delta function (δi,j = 1 if
i = j, 0 otherwise).

The predictive distribution over the candidate values for
g(x∗) is obtained by conditioning on the observed training
outputsy:

p(g∗|y) =
p(y, g∗)

p(y)
(11)

The result is the predictive Gaussian distribution:

p(g∗|y) = N (ḡ∗, σ
2(g∗)) (12)

where
ḡ∗ = µ(x∗) = k′

∗(K + σ2
nI)

−1y (13)

σ2(g∗) = k∗ − k′
∗(K + σ2

nI)
−1k∗ (14)

Note that GPR estimates the probability distributionp(g∗|y)
over the candidate values forg(x∗), rather than providing a
single prediction (estimated best guess) forg(x∗). The value
µ(x∗) is used as the estimation forg∗, while the variance
σ2(g∗) defines how much the GP model is confident with the
estimation (larger variance means smaller confidence).

The Cholesky decomposition of matrixK + σ2
nI enables a

fast and numerically stable implementation of Equations (13)
and (14). However, the complexity of inverting the matrix
K + σ2

nI is O(|T |3), where |T | is the number of train-
ing observations. The computation of the predictive mean
(Eq. (13)) can be reduced toO(|T |), as it can be rewritten
as µ(x∗) = k′

∗β, with the factor β = (K + σ2
nI)

−1y

calculated just once for multiple predictions. A similar speed-
up cannot be achieved for the computation of the predictive
variance (Eq. (14)), which costsO(|T |2) per single test case.
Therefore, GP training scales cubically with the number of
training examples|T |, while predictions are quadratic in|T |,
making prohibitive the application of GPR with more than
few thousands of training examples. However, within our
problem settings, much smaller data sets are used by the ALP
algorithm, as the generation of training examples is expensive.

The predictive distribution in Eq. (12) can be computed for
any setX∗ of test inputsx∗. In this case, Equation (10) is
reformulated as follows:

p(y,g∗) =

[

y

g∗

]

= N
([

0

0

]

,

[

K + σ2
nI K∗

K ′
∗ K∗∗

])

(15)

where the |T | × |X∗| matrix K∗ contains the covariances
among training and test locations, whileK∗∗ is the covariance
matrix of test inputs. The predictive joint distributionp(g∗|y)
of the test outputsX∗ has the following non-zero mean vector
and covariance matrix:

ḡ∗ = K ′
∗(K + σ2

nI)
−1y (16)

cov(g∗) = K∗∗ −K ′
∗(K + σ2

nI)
−1K∗ (17)

The joint distribution p(g∗|y) is the posterior distribution
for a finite set of test cases. While the predictive marginal
distributionsp(g∗|y) provides information about a single test
input, the predictive joint distributionp(g∗|y) defines the

estimated correlation among the test inputs. In fact, when
combining the prior Gaussian process with the observations
by Bayesian inference and under the Gaussian noise model
assumption, a Gaussian process on its own is actually obtained,
referred to as theposterior GP. It has the following non-zero
mean and covariance functions:

µT (x) = k′(K + σ2
nI)

−1y (18)

covT (gi, gj) = cT (xi,xj) = c(xi,xj)− k′
i(K + σ2

nI)
−1kj

(19)
where the|T | × 1 vector k contains the covariances among
the training inputs and inputx. The index T in function
symbolsµT and cT highlights that the posterior GPdepends
on the training observations. The posterior variancecT (x,x)
is equal to the prior variancec(x,x) minus a positive term,
which depends on the training inputs. Thus the posterior
variance is always smaller than the prior variance, due to the
additional information provided by the observations. Notethat
the predictive distributionsp(g∗|y) andp(g∗|y) for single and
multiple test cases, respectively, are consistent with Eq.(18)
and Eq. (19). Figure 5 (left) depicts five sample functions
from the GP posterior, obtained by using the prior GP defined
in Fig. 4 (left) and by setting the noise varianceσ2

n to the
value 0.2. Usually, the mean functionµT (x) (solid blue line
in Fig. 5 (right)) is used as the estimation of the latent function
g(x). In fact, the mean function can be interpreted as the
average of a large number of sample functions drawn from
the GP posterior, each one providing an estimation ofg(x).
When using GPR within the ALP algorithm, the mean function
of the posterior GP represents the Pareto front learnt from
approximated Pareto-optimal training vectors.

C. Gaussian process training (model selection)

Gaussian process regression is a non-parametric technique,
as no parametric formulation of the latent function (e.g., a
weighted sum of fixed basis functions) is assumed. However,
covariance functions typically have a set of free parameters.
In the GPR literature, these parameters are usually referred
to ashyperparameters, to emphasize that they are parameters
of a non-parametric model [6]. The hyperparameters control
the shape of the sample functions drawn from the parametric
prior. For example, the two pictures in Fig. 3 show how
the hyperparameterl in the squared exponential covariance
function (Eq. (5)) affects the length-scale of the sample
functions. In the rest of this paper, the hyperparameters ofthe
GP model, consisting of the covariance function parameters
and the noise varianceσ2

n, will be collectively referred to
by the vectorθ. For example, when considering the squared
exponential covariance function,θ = [σ2

f , l, σ
2
n].

In principle, as GPR is a probabilistic model, a prior
distribution p(θ) encoding the belief about hyperparameters
can be defined. The predictive distributionp(g∗|y) for a test
input x∗ can then be obtained by marginalizing over the
uncertainty in the hyperparameters:

p(g∗|y) =
∫

p(g∗|y,θ)p(θ|y)dθ (20)

8

0 1 2 3 4
−3

−2

−1

0

1

2

3

x

y

0 1 2 3 4
−3

−2

−1

0

1

2

3

x

y

Fig. 5. (Left) Sample functions from the posterior GP. (Right) Mean function (solid line) of the posterior GP approximating the latent functiong (dotted
line). In both plots, squared points show the training examples and the shaded area depicts the 95% confidence region, which is defined at each input location
x by the interval[µT (x)− 2σ2(x), µT (x) + 2σ2(x)], with σ2(x) = cT (x, x).

That is, the predictive distribution is obtained by considering
the predictions fromall the possibleθ values weighted by their
posterior probabilityp(θ|y). The inclusion of the termp(θ|y)
enables to rely on predictions ofplausible hyperparameters
settings. However, in general the above Bayesian formulation
cannot be evaluated analytically and expensive numerical
methods have to be considered [6]. Therefore this approach
cannot be adopted by the ALP algorithm, which re-trains the
GP model several times with an increasing training set.

Instead of considering the predictions from all possible
hyperparameters settings, asinglevalue forθ can be inferred
from the observationsy. A popular choice consists of selecting
the value θ̄ maximizing the posterior probabilityp(θ|y),
defined as:

p(θ|y) ≈ p(y|θ)p(θ) (21)

The term p(y|θ) corresponds to the marginal likelihood
defined in Eq. (9), which can be rewritten as follows to
highlight the dependency of the function variablesg on the
GP hyperparameters:

p(y|θ) =
∫

p(y|g,θ)p(g|θ)dg = N (0,K + σ2
nI) (22)

Although a suitable prior distributionp(θ) in Eq. (21) helps
in discarding unreasonable values ofθ [14], when the prior
belief about the hyperparameters is vague, the component
p(θ) is typically set to the uniform distribution (i.e., ignored).
Therefore Eq. (21) reduces to the maximization of the marginal
likelihood. For numerical reasons, the log-marginal likelihood
is used. The valuēθ is thus obtained by maximizing w.r.t.θ
the quantity:

log p(y|θ) = log N (0,K + σ2
nI) =

=− |T |
2

log 2π − 1

2
log |K + σ2

nI|−
1

2
y′(K + σ2

nI)
−1y

(23)

The quantity logp(y|θ) represents the log-evidence for the
specific GP model defined by the hyperparameters settingsθ.

In general, maximizing the quantity logp(y|θ) is a non-
convex optimization task. Standard gradient-based optimiza-
tion algorithms, e.g., conjugate gradient techniques or quasi-
Newton methods, are typically adopted to search for locally-
optimal points. The cost of computing the log-marginal like-
lihood and its gradient is dominated by the inversion of the
covariance matrixK + σ2

nI. The inversion is performed at
each of thel iterations of the optimization algorithm, yielding
a complexity ofO(l|T |3). When the number of hyperparam-
eters is small w.r.t. the number of training examples, local
optimizers are not usually a problem [15]. However, with
small-size training datasets, local optimizers may decrease the
performance of the optimization technique. Random restarts
of the optimization algorithm overcomes the search stag-
nation into the local optima. Furthermore, investigating the
θ configurations corresponding to the local minimizers may
be worthwhile. In fact, every locally-optimal configuration
corresponds to a particular interpretation of the trainingdata.
When a small number of training examples is available,
locally-optimal configurations with significantly different log-
likelihood values may provideplausible alternativeinterpre-
tations of the training examples [6] (e.g., low noise levelσ2

n

and short length-scalel w.r.t. high noise level and long length-
scale).

In addition to the optimization of the covariance function
hyperparameters, the model selection procedure may also
include the discrete choice between different functional forms
(i.e., models) for the covariance function. In particular,the
functional form can be selected by simply comparing the
maximum likelihood values computed for each candidate
model. Finally, rather than resorting to a zero-mean prior GP,
a parametric formulation for the mean function can also be
specified. Its hyperparameters are included in the vectorθ and
optimized together with the noise model and the covariance
function hyperparameters.

D. Uncertainty sampling with GPR

Acquiring training examples for supervised learning tasksis a
typically expensive and time consuming process. Active learn-

9

ing approaches attempt to reduce this cost by actively suggest-
ing examples for which supervision should be collected, in an
iterative process alternating learning and feedback elicitation.
To minimize the number of training examples generated,active
learning methods select the inputs that provide the highest
information gain for the learnt model. The informativeness
of the query inputs can be defined in different ways and
several active learning techniques exist (see [16] for a recent
review). One of the most popular is the uncertainty sampling
principle [7], which considers the input with highest predictive
uncertainty as the most informative training example for the
current model.

The ability of GPR in estimating the confidence for individ-
ual predictions enables a suitable application of the uncertainty
sampling principle. A large varianceσ2(g∗) of the predictive
distribution N (ḡ∗, σ

2(g∗)) for a single test inputx∗ means
that the test sample is not represented by the GP model learnt
from the training data. The predictive variance quantifies the
predictive uncertainty of the GP model, and therefore the
input maximizing the predictive variance is selected by the
uncertainty sampling principle.

With GPR, predictive uncertainty grows in regions away
from training inputs. The plot in Fig. 6 (left) is obtained by
adopting a squared exponential covariance function with fixed
hyperparametersσ2

f = 1, l = 0.5, σ2
n = 0.2. When the GP

model is re-trained with the inclusion of the most uncertain
input (triangular marker in Fig. 6 (left)) in the training set,
the prediction accuracy improves, as clearly showed by Fig.6
(right).

E. Summary

Regression based on Gaussian process (GPR) assumes a
Gaussian noise model. In particular, at each input location
x the noiseǫ follows an independent Gaussian distribution
with zero-mean and identical varianceσ2

n over the whole
input domain (homoscedasticityproperty). Ifg(x) is the latent
function to be estimated, the training valueyi observed at
input xi is given asyi = g(xi) + ǫ. Furthermore, the joint
distribution of the noise over each arbitrary subset of the
inputs is amultivariateGaussian satisfying themarginalization
property. Predictions are obtained by Bayesian inference from
the training data and from the prior belief about the latent
functiong. The prior information is encoded by a prior Gaus-
sian process, completely specified by its mean and covariance
functions. The covariance function defines the correlation
between two arbitrary random function variablesgi, gj , and
thus the similarity between the corresponding inputsxi,xj .
The covariance function characterizes the properties of the
regression functions (e.g., smoothness) that can be generated
by the GP. Both the mean and the covariance functions are
parametric, and their (hyper-)parameters, together with theσ2

n

parameter of the noise model, are usually tuned by maximizing
the log-likelihood of the training data. Log-likelihood opti-
mization trades off the model complexity (regularization)and
the model fit to the noisy input data [6].

The Gaussian noise model enablesexactBayesian inference
of the predictive distribution on the test inputs and exact com-
putation of the log-likelihood. However, thetime complexity

of both training the GP (i.e., log-likelihood maximization) and
making predictions isO(|T |3), with |T | being the number of
training examples. Therefore GPR does not scale well with the
number of training examples: neither the predictive distribution
nor the marginal likelihood can be computed exactly with large
datasets. In this case, one can use approximate and sparse
methods, which decrease the complexity toO(|S|3) by select-
ing an informative subsetS ⊂ T of the training examples [6].
However, in our settings exact inference is possible because of
the limited size ofT . The ALP algorithm adopts GPR because
it can quantify the confidence about the predicted regression
functiong̃. The estimation of the predictive uncertainty enables
a sound application of theuncertainty samplingprinciple. In
particular, the predictive uncertainty on a test inputx∗ is
quantified by the varianceσ2(g∗) of the predictive Gaussian
distribution of theg∗ values.

V. RELATED WORK

Estimation of Distribution algorithms (EDAs) are Evolutionary
techniques which generate a probability model of promising
solutions based on statistical information extracted fromthe
current population. New candidate solutions are sampled from
the model and used to update the current population.

ALP shares with EDAs the extraction of statistical global
information from current data. However, our technique is not
developed within the Evolutionary framework. EDAs typically
generate a probability distribution of promising solutions in the
decision space, which is used by the genetic operators to refine
the current population. A finite PF approximation is provided
by the population. On the contrary, the model learnt by ALP
is an analytical PF approximation and the training examples
are Pareto-optimal points generated by solving different SOPs.
Furthermore, the SOPs are not fixed at the initialization phase,
but they are dynamically generated based on the predictive
uncertainty of the current PF model. Selecting the new training
inputs based on the predictive model uncertainty provides two
advantages. First, it enables a computationally cheaper and
accurate PF approximation. Second, because the predictive
uncertainty increases when moving away from the current
training inputs, a diversified set of Pareto-optimal solutions,
corresponding to objective vectors distributed over the whole
PF, is provided to the decision maker.

Rather than learning a model of the promising solutions like
the EDAs, surrogate-based EMOAs [17], [18] adopt machine
learning methods to generate surrogates of the MOP functions.
Surrogates generation is particularly convenient when the
evaluation of the original MOP objectives is computationally
expensive. The aim of surrogate-based evolutionary algorithms
is the reduction of the run-time and the computational cost
spent to drive the population towards the PF.

The rest of this section includes a description of EDAs,
mostly examining the state-of-the-art MMEA algorithm, which
is the ALP benchmark in our experimental studies. A discus-
sion about surrogate-based (Evolutionary) optimization fol-
lows, focussed in particular on the recent MOEA/D-EGO
approach, which employs the Gaussian process optimization
paradigm.

10

0 1 2 3 4
−3

−2

−1

0

1

2

3

x

y

0 1 2 3 4
−3

−2

−1

0

1

2

3

x

y

Fig. 6. Uncertainty sampling with GPR. The interpretation ofthe solid, dotted lines, of the squared points and the shadedarea is the same as in Fig. 5.
(Right) The triangular mark on the x-axis highlights the input x̂ where the GP prediction is most uncertain. (Left) The GP prediction accuracy improves when
including example(x̂, ŷ) in the training set.

A. Multi-objective Estimation of Distribution algorithms

Estimation of Distribution Algorithms (EDAs) learn a joint
probability density function over the decision variables of
the optimization problem. The probability density function
models the distribution of the promising solutions in the
current population, with the purpose of learning the pattern
characterizing the set of promising solutions. The patternis
generated by dependencies among the decision variables, often
referred to asvariable linkages[4]. The learnt information is
used to predict the distribution of new high-quality solutions,
thus driving the search towards the promising areas of the
space. In particular, at each generation of the algorithm, the
probability density function is sampled to generate a set of
candidate solutions. This sample is then evaluated with respect
to the objective functions of the problem and it is used to refine
the current population. Based on the refined population, a more
accurate model generating better-quality solutions with higher
probability can be learnt in the next iteration. The generic
framework of EDAs is in Fig. 7.

The motivation for EDAs is given by the limitation of
common genetic operators: when two parents are in the PS,
their offspring may not be close to the PS. An analogous
behavior is observed when applying the mutation operator:
if the original solution is Pareto-optimal, the modified solu-
tion may be dominated. Rather than resorting to traditional
genetic operators, EDAs refine the population by updating
and re-sampling the probability model of promising solutions.
Therefore, the generated probability model should describe
accurately the promising areas of the search space. Further-
more, a complicated model requiring expensive generation and
sampling operations is not suitable in the context of EDAs, as
these operations are repeated several times during the search.

Different probability distributions can be used in EDAs, and
different machine learning methods can be adopted to learn
and sample them [19]. In particular, the dependencies among
the decision variables can be modeled by univariate [20],
bivariate [21] and multivariate [22] probability distributions.
Univariate models are based on the assumption of indepen-
dent decision variables. While bivariate distributions model

pairwise dependencies only, more complex interactions among
subsets of variables are represented by multi-variate models.
These models are usually the product of marginal probability
distributions, called factors, defined over (overlapping)subsets
of the decision variables. The increased expressiveness ofthe
more sophisticated models, like the multi-variate distributions,
has to be traded off with their larger computational cost.

A common approach to build computationally tractable
models relies on the Gaussian distribution assumption for the
decision variables. The multivariate Gaussian distribution is
defined by the vector of mean values (one for each decision
variable) and the covariance matrix. The mean vector deter-
mines the bias of each variable values and the variances, i.e.,
the entries along the diagonal of the covariance matrix, define
the spread of the values. The covariances (the off-diagonal
entries in the matrix) define the pairwise dependencies among
the decision variables.

Different EDAs for multi-objective optimization (acronym
MOEDAs) have been developed. The works in [23], [22]
learns a single probability distribution modeling the whole
search space. To promote the diversity of the population, the
approaches in [24], [20], [11] partition the population into
different clusters and learn a separate local model for each
cluster. Depending on the specific algorithm, clustering may
be performed in the decision space [11] or in the objective
space [24], [20]. A mixture distribution can be used to aggre-
gate the local probabilistic models [20].

Among the evolutionary methods, MOEDAs [19] are closest
to our approach, sharing with ALP the extraction of global
statistical information from the current data. Therefore in
the following, we focus on the MMEA algorithm [24], a
state-of-the-art MOEDA which will be the touchstone in our
experiments.

B. The MMEA algorithm

Pareto-optimal solutions are typically not scattered at random
over the decision space. Their distribution indeed exhibits a
clear geometric shape. In particular, under mild smoothness
conditions, both the PF in the objective space and the PS in

11

1. procedure EDA
2. input: multi-objective optimization problem, population size|P |
3. output: finite set of points (i.e., population)P approximating the PS

4. generate the initial populationP /* Initialization */
5. do
6. Generate a modelM for the distribution of the individuals inP /* Modeling */
7. SampleM to generate a set of new solutionsQ /* Reproduction */
8. Select|P | from P ∪Q and replace the individuals inP by them/* Selection */
9. until (termination criterion)
10. return populationP

Fig. 7. Generic EDAs framework. The termination criterion is typically represented by a pre-defined number of iterations (i.e., population generations within
the Evolutionary metaphor).

the decision space are piecewise continuous manifolds [11].
While the dimensionality of the PF manifold ism − 1, with
m the number of objective functions, the dimensionality of the
PS manifold is typically larger and unknown. The RM-MEDA
algorithm [11] has been designed to tackle MOPs where the
PS dimensionality ism−1. MMEA [24] extends RM-MEDA
to handle the case of unknown larger PS dimensionality. The
rationale for MMEA is the assumption that the population
of the EMOAs becomes scattered around the PS as the
search goes on. Therefore, the PS approximation generated by
EMOAs is provided by the candidate solutions located within
the central region of the area containing the current population.
Under this assumption, promising candidate solutions can be
locally modeled by a probability distributionξ whose centroid
is the approximation to the PS. Each solution of the current
population is considered an independent observation of vector
ξ.

In order to generate a model of the Pareto set, MMEA
clusters the population members in the decision space into
a number of sub-populations based on the distribution of their
images in the objective space. This approach favours diversity
in the objective space. As the PF dimensionality is assumed to
bem−1, the PF is approximated by fitting am−1-dimensional
simplex over the objective vectors. In detail, the i-th vertex of
the simplexS, i = 1, 2, . . . ,m, is the vertex corresponding to
the non-dominated solution with largestfi value. SimplexS
is shifted along its normal direction by the minimum distance
enabling each point inS to be non-dominated by the vectors in
the population. Finally, the volume ofS is arbitrarily increased
by a factorα to favour the exploration of the objective space.
The objective vectors are clustered aroundk reference points
uniformly distributed over the simplex.

By clustering in the objective space, the solutions in the
decision space are partitioned intok (possibly overlapping)
sub-populations. Each subpopulation provides a local approx-
imation of the PS. In particular, a linear local approximation of
the PS is obtained by applying the principal component anal-
ysis technique (PCA) over each subpopulation independently.
The unknown PS dimensionalityd is locally estimated by the
numberd̃j , j = 1, 2, . . . k, of principal components explaining
a preset percentageθ of the variation in the j-th subpopulation
data, whereθ is a control parameter of MMEA. The first̃dj
principal components obtained by PCA identify the axes of the

hyper-cuboidΨj locally approximating the PS. The range of
each axis is provided by the smallest hyper-cuboid, centered at
the empirical mean of the subpopulation solutions, containing
the projections of all the subpopulation solutions on the space
spanned by thẽdj axes from the center of the cuboid. The
range of each axis is then enlarged to increase the cuboid
volume by a factorβ, with β being a control parameter of
MMEA. The rationale for this choice is the promotion of the
exploration of promising regions in the decision space (with
respect to the directions explaining most of the variance inthe
data).

The local distribution of promising solutionsξj for the j-
th subpopulation is modeled by a uniform probability vec-
tor on the j-th hyper-cuboid and a Gaussian additive noise
component. Thek local probability modelξj are sampled
to obtain a set of new candidate solutions (reproduction by
sampling) which are used to refine the current population. The
sampling procedure consists of selecting the hyper-cuboidΨj

with probability Pj , picking uniformly at random a pointxr

fromΨj and perturbingxr by an additive noise vector sampled
from the noise component. When the sampled solution does
not belong to the feasible regionΩ in the decision space, it is
discarded and replaced by a new candidate selected uniformly
at random withinΩ.

C. Surrogate-based EMOAs

EDAs use statistical models to generate the offspring of the
population, which is then evaluated w.r.t the original objective
functions to build the new generation. A different usage of
statistical models in EMOAs consists of learning asurrogate
of the original objective functions. The approximated objective
values predicted by the surrogate model are used to estimate
the quality of candidate solutions, without evaluating the
original MOP functions. The surrogate model (also referred
to asmeta-modelor response surface model) is therefore an
approximation of the original fitness surface. This approxi-
mation is used to reduce the number of evaluations of the
original MOP functions. The surrogate model is usually learnt
from solutions already evaluated. Different techniques from
the statistical learning community have been used to learn the
surrogate models [17]. Analogously to the model generationin
EDAs, because a surrogate model is usually trained, refined

12

and evaluated several times, a trade-off among its accuracy
and its computational cost has to be considered.

With respect to ALP, a relevant surrogate-based approach
is the recent MOEA/D-EGO algorithm [25], a variant of the
MOEA/D algorithm [26]. The Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) decomposes
the original MOP intos SOPs, obtained by scalarization. The
objective of the i-th SOP, i = 1, 2, . . . s, is a parametric
combinationh(x|λi) of the original MOP objectives, with
λi being the vector containing the scalarization parameters.
The generated SOPs differ from each other in the values
of the parameter vector. A neighbourhood relation among
the SOPs is defined, based on the distances between their
parameter vectors. Each SOP is optimized simultaneously
by using information mainly from its neighbouring SOPs.
This approach assumes that neighborhood problems are likely
to have similar solutions, and therefore they can profitably
exchange information during their joint optimization. The
population of MOEAD/D consists of the current solutions of
the s SOPs.

MOEA/D-EGO learns a surrogate GP model for each ob-
jective of the original MOP. The training set is the current
population which contains all the solutions evaluated so far. A
predictive model is then derived for each SOP, i.e., for each
parametric combinationh(x|λi) of the MOP objectives. In
particular, the i-th predictive model estimates the probability
distribution of the values ofh(x∗|λi) at each test input
x∗. The probability distribution is used in combination with
the expected improvement metricψi(x), which measures the
merit of evaluating inputx (by the original MOP objectives)
to optimize h(x|λi). The s expected improvementsψi(x),
i = 1, 2, . . . s, are optimized simultaneously to obtain points
x̃i, with x̃i being the approximate solution maximizingψi(x).
The simultaneous optimization is obtained by applying the
MOEA/D algorithm. MOEA/D optimizesψi(x) by exploiting
the solutions that maximize the expected improvements of the
neighbouring SOPs. A subset of the pointsx̃i, i = 1, 2, . . . s
is then selected to be evaluated by the original MOP objec-
tives. The selected points are finally included into the current
population.

Even if MOEA/D and MOEA/D-EGO share with ALP the
generation of scalar SOPs and the adoption of GP models,
their approach is very different from ALP. MOEA/D and
MOEAD/D-EGO use a pre-specified number of parametric
SOPs with uniformly distributed parameter vectors defined
at initialization. Pareto-optimal solutions (or approximation
thereof) are obtained by solving the subproblems generated
by the set of weighting vectors. However, it may be difficult
to select suitable parameter vectors for obtaining solutions
evenly distributed over the whole PF. For example, in the
weighted sum aggregation method [1], an uniform distribution
of parameter vectors does not necessarily generate a set of
solution evenly distributed over the PF [1].

On the other hand, ALP learns a GP global model of the
PF from a training set of approximate Pareto-optimal vectors.
The training set is generated on-line, with each training
example being the solution of a SOP. Therefore, the SOPs are
dynamically generated during the search process rather than

being defined at the initialization stage. In particular, the SOPs
generation is driven by the predictive uncertainty of the learnt
GP model. Furthermore, a single Gaussian process model is
learnt by ALP to solve a regression task, i.e, generating an
analytic approximation of the PF. In MOEAD/D-EGO the GP
models are used to efficiently solve SOPs, i.e., to find the
optimum of a function with the lowest number of function
evaluation possible. Therefore, in MOEA/D the learnt GP
model is used as a response surface to search for likely
candidate global optima.

In ALP, the training examples are generated by solving
the non-linear problem in Eq. (3). Our future research will
consider surrogate-based techniques for single-objective opti-
mization, in order to reduce the computational cost of ALP
supervised information.

VI. EXPERIMENTAL RESULTS

ALP is tested over the RM-MEDA benchmark introduced
in [11] to evaluate the ability of EDAs in recovering the Pareto
front. As the best results over the RM-MEDA benchmark
has been achieved by the MMEA algorithm [24], the latter
represents the touchstone in our experimental studies. In
particular, the optimal setting of MMEA parameters is taken
from paper [24].

The experimental studies are described as follows. First, the
RM-MEDA benchmark is outlined. The setting of the ALP
algorithm is then detailed and a single ALP run is showed, in
order to provide a paradigmatic case of the PF approximation
refinement observed during the learning iterations. The com-
parison with the MMEA algorithm is given in Subsec. VI-E,
following the description of the comparison metrics adopted.
Finally, ALP is applied on the welded beam design MOP [27],
a widely-used benchmark introduced in the spirit of real world
optimization tasks.

A. The RM-MEDA benchmark

For a comparison with ALP, we consider the bi-objective
problems of the RM-MEDA benchmark [11]. By using the
numbering adopted in paper [24], the benchmark set is thus
formed by the instances ZZJ08-F1, ZZJ08-F2, ZZJ08-F3,
ZZJ08-F5, ZZJ08-F6 and ZZJ08-F7. These instances are
derived from the widely-known Zitzler-Deb-Thiele (ZDT) test
problems [28]. The PS of the bi-objective ZDT problems
is parallel to the coordinate axes, because of the lack of
dependencies among the decision variables. This deficiency
introduces a bias in favor of the commonly used crossover
operator: if two solutions are Pareto-optimal, their offspring
is likely to be Pareto-optimal. Furthermore, variable linkages
exist in many applications and their inclusion into test suites
has been suggested by different works [29], proposing variable
transformations for introducing dependencies among the deci-
sion variables. The RM-MEDA instances F1, F2, F3 introduce
linear linkages in the formulation of the ZDT1, ZDT2 and
ZDT6 test problems [28]. Nonlinear dependencies among the
decision variables have been added to the definition of the
same ZDT instances to generate the RM-MEDA problems F5,
F6, F7. Their Pareto sets consist of bounded continuous curves.

13

B. ALP setting

In order to avoid any bias favouring our method over the
competitor, the PF manifold is arbitrarily expressed by con-
sidering z2 as a function ofz1: z2 = g(z1). To apply the
ALP algorithm, the Ideal and Nadir pointszID andzN of the
above MOPs are computed offline. In particular, the domain
[zID1 , zN1] of the regression task is equal to[0, 1] for all
the considered MOPs, with the exception of problemsF3
and F7 where the domain is the interval[0.281, 1]. ALP is
implemented in Matlab R2008a. In particular, the optimization
problem (3) generating supervised information is solved by
using the continuous local search algorithms for constrained
optimization provided by the Matlab Optimization ToolboxTM

library. In detail, a sequential quadratic programming algo-
rithm [30], [31] is used, except for problemsF3 andF7, where
an interior-point method [32] is adopted. The choice of the
optimization strategy is based on the observed convergence
rate to the (local) optima of the functionfm. Both strategies
are implemented by the “fmincon” Matlab routine. A single
run of “fmincon” algorithm is performed, initializing at ran-
dom the starting point and limiting the number of scalarized
function evaluations to3000. For the considered MOPs, within
the value of3000, the algorithm usually converges to a (local)
minimum of the functionfm. In general, ALP is a flexible
framework enabling the usage of alternative constrained op-
timization algorithms (e.g., derivative-free approaches) rather
than the “fmincon” routine to solve problem (3).

ALP training set is initialized by selecting two training
examples uniformly at random within the input space. In the
performed experiments, the mean function of the prior GP is
the linea ∗ x+ b, with {a, b} being the mean function hyper-
parameters. Three candidate forms for the covariance function
are considered: the squared exponential (Eq. (5)), the neural
network and the Matérn covariance functions (see book [6]
for their formulation). In combination with the mean and
covariance functions, we make use of a white Gaussian noise
model with varianceρ2n. The hyperparameters vectorθ thus
includesρ2n, the mean function hyperparametersa and b and
the covariance function hyperparameters. The model selection
phase consists of two tasks: 1) the choice of the functional
form for the covariance function, 2) the optimization of the
hyperparametersθ. Both tasks are accomplished in one step
by evidence maximization (see Eq. (23)): for each candidate
covariance function, the vectorθ is optimized. The setting
with largest likelihood value is then selected. In particular, the
optimization task is solved by applying a conjugate gradient
algorithm. Ten runs of the algorithm are performed, each one
consisting of50 conjugate gradient steps. A different starting
point θinit is used for each run. A suitable selection of the
starting point, based on the prior knowledge about the desired
PF model, drives the optimization algorithm towards (local)
minima which provide plausible interpretations of the training
data. In particular, the slopea of the mean function in vector
θinit is initialized to the value−1. In fact, any connected PF
of a bi-objective minimization problem can be modelled by
a strictly decreasing function. The gain from the inclusionof
prior knowledge in the starting point design is more significant

at the initial iterations of the ALP algorithm, when the number
of training examples is limited.

C. A single ALP run in detail

A single run of the ALP algorithm over MOP ZZJ08-F2 is
shown in Fig. 8. The predictive GP model is depicted by
the solid line, while the dotted line represents the unknown
Pareto frontz2 = g(z1). The shaded area represents the 95%
confidence interval for the predictive GP model. At the first
iteration, with a couple of training examples only, the learnt PF
model is a line, while the order of magnitude of the predictive
variance is10−6 and thus the shaded area cannot be visualized.
The inclusion of the new training example located at input
z1 = 0.01 (triangular marker over thex-axis) changes the
slope of the line, while constant predictive uncertainty over the
input space is observed. In this case, the ALP algorithm places
the new query point at the inputz1 maximizing the minimum
distance from the training examples. At the third iteration, the
accuracy of the learnt model improves. Predictive uncertainty
increases when moving away from training examples and
the shaded area entails the Pareto front to be modeled. The
uncertainty sampling method selects the inputz1 = 0.29
as the new training example. At the fourth iteration, with
1536 evaluations of the MOP objective functionsf(x), the
PF is successfully recovered. Additional refinement iterations
slightly improve the accuracy of the learnt model (however
the improvements cannot be visually observed), while the
predictive uncertainty becomes null. In general, the adoption
of the active learning to generate the training examples favours
the anytime property: when increasing the number of functions
evaluations, the PF approximation improves.

D. Comparison metrics

The performance of the ALP and MMEA algorithms is
evaluated by measuring the quality of the recovered PF
approximation w.r.t its cost. The cost is expressed by the
number of objective function evaluations rather than the CPU
time, as the evaluation of complex and expensive objective
functions is the computational bottleneck of the real-world
MOPs [3]. Furthermore, the number of function evaluations
is the commonly used and generally accepted measure for
the run time in the multi-objective optimization literature. The
quality of the PF approximation is estimated by the inverted
generational distance (IGD) and the hypervolume difference
(IH−) metrics. Each metric evaluates the quality of the PF
approximation recovered by an evolutionary multi-objective
algorithm (EMOA) by measuring both the convergence and the
diversity of its population. The adopted metrics are calculated
according to the procedure described in paper [24].

A test setP ∗ of Pareto-optimal objective vectors uniformly
spread over the PF is generated. WithP denoting the popula-
tion of the EMOA, the IGD metric is defined as follows:

IGD(P ∗, P) =

∑

z
∗∈P∗ d(z∗, P)

|P ∗| (24)

whered(z∗, P) is the minimumEuclidean distance from the
Pareto-optimal vectorz∗ to any objective vector inP , while

14

0 0.2 0.4 0.6 0.8 1
0

0.3

0.6

0.9

1.2

z
1

z 2

iter 1

0 0.2 0.4 0.6 0.8 1
0

0.3

0.6

0.9

1.2

z
1

z 2

iter 2

0 0.2 0.4 0.6 0.8 1
0

0.3

0.6

0.9

1.2

z
1

z 2

iter 3

0 0.2 0.4 0.6 0.8 1
0

0.3

0.6

0.9

1.2

z
1

z 2

iter 4

Fig. 8. Generation of most informative training examples whilesolving MOPF2. Each figure depicts the PF (dotted line) of the learnt model (solid line).
The Figures refer to the first, second, third and fourth refinement iterations, respectively. Shaded area denotes the 95% confidence interval for the predictive
GP model. On thex-axis, the most informative training example, selected by active learning, is showed by a triangular marker. At the fourth iteration (second
row, right figure) the PF is correctly learnt.

|P ∗| indicates the cardinality ofP ∗. According to the notation
used in paper [24], the IGD metric is denoted as IGDF
because it measures the quality of the PF approximation (i.e.,
P is a set of objective vectors andd(z∗, P) is the Euclidean
distance in the objective space). The dominated hypervolume
metric IH(P) (hypervolume for short, also known as Lebesgue
measure or S-metric) measures the size of the objective
space dominated by the populationP and bounded by a
fixed reference point [33]. The hypervolume difference metric
IH−(P ∗, P) is defined as:

IH−(P ∗, P) = IH(P ∗)− IH(P) (25)

The IGDF and the IH− are alternative measures ofboth the
diversity and the convergence ofP , provided that the value
|P ∗| is large enough to represent the whole PF. The lower
is the value IGDF(P ∗, P) and IH−(P ∗, P), the better is the
quality of the populationP approximating the PF. To have a
low value of IGDF(P ∗, P) and IH−(P ∗, P), the populationP
must be close to the PF and cannot miss any part of the whole
PF. The reference point for the hypervolume computation and
the cardinality|P ∗| used in the experiments reported here are
taken from paper [24].

The above metrics measure the quality of a finite set of
points (population) approximating the PF. When adopting
these metrics to evaluate the ALP algorithm, which recoversan

analytical PF model̃g rather than a discrete PF representation,
the populationP is computed by sampling the analytical
PF model. In particular,|P ∗| sample vectors of the form
z̃ = {z∗I , g̃(z∗I)} are generated by evaluating̃g(z∗I) for each
z∗ ∈ P ∗. Any dominated objective vector among the|P ∗|
samples generated is discarded. Furthermore, as the ALP algo-
rithm may generate PF models which are (partially) infeasible
(this behavior has been occasionally observed during the initial
refinement iterations), the absolute value of the hypervolume
difference metric (Eq. (25)) is considered.

E. Detailed comparative results

Fig. 9 and Fig. 10 compare the performance of the ALP and
MMEA algorithms. The curves depict the evolution of the
IGDF (left column) and IH− (right column) metrics over the
number of evaluations of the MOP objective vectorf(x). The
dashed and solid lines correspond to the ALP and MMEA
algorithms, respectively. Each point is the median value over
20 runs, executed with different seeds. Error bars denote the
interquartile range (IQR) of data distribution.

With the exception of MOPsF3 andF5, the ALP algorithm
dominates the MMEA technique, achieving on average a PF
approximation with sensibly better quality, in terms of both
performance metrics. For example, over MOPF1, within
10000 function evaluations, a more accurate Pareto front is

15

recovered by the ALP algorithm, and after10000 evaluations,
the quality of ALP solution is at least twelve times better than
the quality of MMEA solution.

A stable behavior is observed for both algorithms. The large
size of the ALP error bars in the case of MOPF2 is due
to the logarithmic scale. In fact, the order of magnitude of
ALP IQR values for MOPF2 is actually lower than that of
MMEA ones. For example, when70000 function evaluations
are performed, the orders of magnitude of the IQR values for
ALP and MMEA results (measured by the IGDF metric) are
10−5 and10−3, respectively.

There is no qualitative difference in terms of the IGDF met-
ric among ALP and MMEA results for MOPF5, but the ALP
technique achieves a better average performance in terms of
the IH− measure. When more than30000 function evaluations
are used to solve MOP ZZJ08-F3, the performance of ALP is
not better than the MMEA algorithm. However, within20000
function evaluations, the quality of ALP solution is betterby at
least a factor ten than the PF recovered by MMEA. Reasonable
approximations obtained within few function evaluations are in
many cases preferred to more accurate solutions which require
a heavier computational effort. In fact, as noted by Lovison
in work [10], “even a roughly sketched global picture of the
whole situation can give crucial information on the problemat
hand, suggesting correctly the location of paramount zones”.

F. Real world MOP

ALP has been applied to solve a benchmark problem in
the spirit of real-world applications, the welded beam design
MOP [27]. It is a widely-studiedconstrainedoptimization
problem, consisting of the design of a beam that is welded
onto another beam to carry a certain load. In particular, the
(point) load consists of a forceF = 6000 lb acting on the
free end of the beam. The overhang portion of the beam has
a length of 14 inch. Four decision variables are defined: the
beam thicknessb, the beam widtht, the weld lengthl, and the
weld thicknessh. The geometry and the loading condition of
the beam are shown in Fig. 11.
Denoting the variable vectorx = (b, t, l, h), the problem
consists of finding the optimal configurationx∗ which min-
imizes both the beam cost (first objective,f1(x)) and the
vertical deflection of the beam end (second objective,f2(x)).
The objectives are conflicting. In fact, cost minimization is
achieved by minimizing the beam dimension, corresponding
to small values for all the four decision variables. However,
the smaller the beam dimensions, the larger the end deflec-
tion tends to be. Minimum deflection at the beam end (i.e.,
maximum rigidity of the beam) is obtained by increasing the
values of the decision variables. The different trade-offsamong
the conflicting objectives can be obtained by recovering the
Pareto front of the problem. The mathematical formulation of
the problem is as follows:

min
x

z1 = f1(x) = 1.10471 h2 l + (26)

0.04811 t b (14.0 + l)

min
x

z2 = f2(x) = 2.1952/(t3 b) (27)

subject to 13600− τ(x) ≥ 0 (28)

30000− σ(x) ≥ 0 (29)

b− h ≥ 0 (30)

Pc(x)− 6000 ≥ 0 (31)

0.125 ≤ h, b ≤ 5.0

0.1 ≤ l, t ≤ 10.0

where:

τ(x) =

√

(τ ′)2 + (τ ′′)2 + (l τ ′ τ ′′)/
√

0.25 (l2 + (h+ t)2)

τ ′ =
6000√
2 h l

τ ′′ =
6000 (14 + 0.5 l)

√

0.25 (l2 + (h+ t)2)

1.414 h l (l2/12 + 0.25 (h+ t)2)

σ(x) =
504000

t2 b
Pc(x) = 64746.022 (1− 0.0282346 t) t b3

The first constraint (Eq. (28)) guarantees that the shear stress
τ(x) at the support location of the beam is smaller than
the maximum shear strength of the material (13600 psi).
Furthermore, the normal stressσ(x) at the support location
of the beam must be smaller than the maximum yield strength
of the material, 30000 psi (second constraint). Finally, the
thickness of the beam must not be smaller than the weld
thickness (Eq. (30)) and the buckling loadPc(x) of the beam
along directiont must be greater than the applied loadF
(fourth constraint). A configurationx violating any of the four
constraints is infeasible.

ALP learns the Pareto front of the welded beam MOP by
considering the end deflection objective as a functiong of the
cost objective (z1). The domain ofg is [zID1 , zN1], with the
valueszID1 = 2.381 andzN1 = 36.421 of the Ideal and Nadir
points, respectively, taken from paper [34].

The best Pareto front model over20 runs recovered by ALP
within 5000 function evaluations is depicted in Figure 12 (left).
The “true” Pareto front, obtained by enumeration, is showedby
a dotted line, while the solid line represents the ALP approxi-
mation. Figure 12 (right) presents the aggregate performance
results over 20 runs of ALP. The performance is measured
by the root mean squared error (RMSE), which evaluates the
difference between ALP approximation and “true” PF of the
welded beam problem. The curve is obtained by reporting
the median RMSE values over the computational effort. The
error bars denote the 25-th and the 75-th percentiles. When
increasing the number of function evaluations, the accuracy of
the PF approximation rapidly improves, until ALP converges
to a RMSE value lower than2×10−3. Furthermore, after500
initial function evaluations, ALP results in less variability than
the more unstable performance observed within the500 initial
function evaluations, confirming the efficiency of the active
learning strategy.

VII. H ANDLING DISCONNECTEDPARETO FRONTS

The ALP framework described in Sec. III assumes to known
the domain of the functionzd = g(zI) characterizing the
PF. In the case of bi-objective MOPs with connected PF

16

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IG
D

F

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IH
−

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IG
D

F

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IH
−

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IG
D

F

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IH
−

Fig. 9. Performance metrics (median values) evolution over thenumber of function evaluations. Error bars represent the IQRof data distribution. Figures
in rows one, two and three refer to MOPF1, F2, F3, respectively. Dashed lines plot ALP results, while solid lines depict MMEA performance.

characterized byz2 = g(z1), this prior information can be
easily obtained by computing the componentszID1 andzN1 of
the ideal and the Nadir point, respectively, or by asking the
decision maker for the interval of the interesting values ofthe
objectivez1.

When the PF isdisconnected, the functiong is discontinu-
ous and its domain cannot be defined by a couple ofz1 values
only. Therefore, assuming a priori knowledge of the domain of
g is impractical. However, a disconnected PF can be identified
by learning a regression functionz2 = h(z1) approximating
the entire lower boundary of the feasible objective region,
including the dominated portions of the boundary (e.g., the

concave parts). As a matter of fact, the PF is a subset of the
objective boundary and thus a model of the disconnected PF
can be extracted straightforwardly by sampling the function h
and keeping the non-dominated samples only (e.g., the points
lying in the concavities of the functionh are discarded). For
example, Fig. 13 (left) shows the feasible objective regionof
the ZDT3 problem, taken from the ZDT benchmark suite [28].
The boundary of the feasible region (gray-shaded area) is the
thin black curve, consisting of both convex and concave parts.
The disconnected PF is depicted by the bold-marked portions
of the black curve.

When the ALP algorithm is used to learn the functionh,

17

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IG
D

F

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IH
−

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IG
D

F

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IH
−

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IG
D

F

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

evaluations (×105)

IH
−

Fig. 10. Performance metrics evolution over the number of function evaluations in the case of MOPF5 (row one),F6 (row two) andF7 (row three). Median
values with IQR error bars are reported. Dashed and solid lines depict ALP and MMEA results, respectively.

both dominated and non-dominated examples are needed. The
former are in fact used to model the concave portions of
the boundary (to be discarded when presenting the PF). In
order to allow this, the dominance-based filtering discarding
false Pareto-optimal training examples has to be switched off.
Otherwise, the learning phase may get stuck when trying to
model the concavities of the boundary, as other dominating
training examples will likely be present in this case (see Fig. 13
(right)).

In order to model entire feasible region boundaries, an
additional functional form has been included in the set of
candidate covariance functions considered by the GP model

selection procedure. This consists of a combined function,
obtained summing up a periodic covariance functioncp with
a squared exponential covariance functioncs (see [6] for their
formulation). The rationale for the choice of functioncp is
the modelling of the concavities characterizing the boundary
of the feasible area. The combination with functioncs enables
a decay away from exact periodicity, as the boundary shape
is not expected to be exactly periodic. Furthermore, the
squared exponential covariance function models the smooth
trend characterizing disconnected Pareto fronts, which, in the
case of bi-objective minimization problems, are monotonically
decreasing piecewise continuous functions.

18

Fig. 11. The welded beam design MOP. The four decision variables b, t, l, h are marked. The forceF acts on the free end of the beam.

0 10 20 30 40
0

0.0025

0.005

0.0075

0.01

0.0125

0.015

cost (z
1
)

de
fle

ct
io

n
(z

2)

0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

evaluations (×103)

R
M

S
E

Fig. 12. Welded Beam problem. (Left) The best Pareto front approximation (solid line) recovered by ALP with less than5000 function evaluations. The
“true” PF is represented by the dotted line, overlapping with the solid line. (Right) ALP performance measured by the RMSE evolution over the function
evaluations number. Median values over 20 runs are reported.Error bars represent the interquartile range.

0 0.2 0.4 0.6 0.8 1
−1

−0.6

−0.2

0.2

0.6

1

z
1

z 2

0.1 0.2 0.3 0.4 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

z
1

z 2

E

Q

Fig. 13. (Left) ZDT3 problem. The boundary (black thin curve)of the feasible region (gray-shaded area) contains both convex and concave parts. The
disconnected PF is formed by the bold-marked curve segments. (Right) When the query point (triangular marker on thez1-axis) does not belong to the domain
of g, the exactsolution of the scalarized program providing supervised information generates an objective vectorQ that may be dominated by the current
training examples (pointE in the graph).

19

Let us note that this combined covariance function is not
designed for a specific MOP, but is a general choice driven by
the typical form of feasible region boundaries. Furthermore,
we are not imposing this covariance function in the prior
GP, but only suggesting it to the model selection procedure
as a candidate covariance function. The identification of the
covariance function (and its parameters setting) that bestfits
(i.e., explains) the training data is performed by the model
selection procedure.

No further modifications are required to adapt the ALP
algorithm presented in Sec. VI to model disconnected PF.

VIII. C ASE STUDIES WITH DISCONNECTEDPF

The ability of ALP in learning disconnected Pareto fronts is
evaluated over four well known MOPs, ZDT3 [28], D99 [3],
[35], TNK [36] and KUR [37]. The selected MOPs differ
from each other in several features. While ZDT3 has 30
decision variables, the decision space of both D99 and TNK
is bi-dimensional and KUR has three decision variables.
The Pareto optimal solutions of ZDT3, D99 and TNK lie
in a one-dimensional piecewise continuous manifold, while
three dimensions are needed to represent the Pareto optimal
solutions of the KUR problem. Furthermore, in the case of
ZDT3, D99 and TNK the manifold formed by the Pareto-
optimal solutions lies on the boundary of the decision space,
while the Pareto optimal solutions of KUR are located around
the center. The shape of the PF also varies among the MOPs
considered. For example, the PF of ZDT3 is formed by five
convex curves, while those of D99 and KUR are represented
by six non-convex curves and by three non-convex curves plus
an isolated point, respectively. Finally, TNK differs fromthe
rest of the MOPs by being a constrained optimization problem.

The MMEA algorithm, which was used as touchstone in
the experiments of Sec. VI, has been designed for connected
Pareto fronts and cannot represent a fair ALP competitor over
the four selected problems. ALP is therefore compared with
the popular state-of-the-art genetic algorithm NSGA-II [38].
We used the original NSGA-II code provided by the authors
(version1.1.6).

The experimental results detailed in the rest of this section
show that the ALP algorithm outperforms NSGA-II over the
ZDT3, D99 and TNK MOPs, while it fails in learning an
accurate model of the KUR PF. A cross-over point is observed
when comparing the algorithms over the TNK MOP. As a
matter of fact, within 6000 function evaluations ALP con-
verges much faster than NSGA-II to a reasonable PF model.
More than 12000 function evaluations are instead needed to
observe NSGA-II performance exceeding ALP performance.
The failure of ALP learning process in the case of KUR MOP
is due to the noisy training dataset obtained when generating
the supervised information. ALP can however detect this
suboptimal behavior, by observing the predictive uncertainty
of the GP model, which does not decrease when increasing
the number of learning iterations. In particular, the predictive
uncertainty remains exceptionally high also in regions of the
regression domain densely populated by training examples.

A. Detailed results over the ZDT3 MOP

There are no discontinuities in the decision space of the ZDT3
problem (in particular, the Pareto set is connected). Its PFis
convex, but disconnected. In particular, it is formed by thefive
different bold-marked curves in Fig. 13 (left). The formulation
of the ZDT3 problem is as follows:

min
x

z1 = f1(x) = x1

min
x

z2 = f2(x) = g(x) ∗ [1−
√

f1(x)/g(x)−
(f1(x)/g(x) ∗ sin(10πf1(x))]

subject to

g(x) = 1 + 9
(n−1) ∗

n
∑

i=2

xi

xi ∈ [0, 1], i = 1 . . . 30

In running the NSGA-II algorithm, we use the specific param-
eter setting for ZDT3 which is available with the code. In this
setting, SBX and polynomial mutation are the operators for
crossover and mutation, respectively. The distribution indexes
for both operators areηc = 15 and ηm = 20, respectively.
The crossover probability is0.9 and the mutation probability
is 1/n, wheren = 30 is the number of decision variables of
ZDT3. A population of size 100 is used, while the algorithm
has been kept running until generation 200.

Twenty runs with different seeds are executed for both the
ALP and NSGA-II algorithms. The convergence to the Pareto
front of the problem is depicted in Fig. 14. In particular,
the left (right) graph reports the evolution of the IGDF
(IH−) metric over the number of function evaluations. The
dashed and solid curves correspond to the ALP and NSGA-
II algorithms, respectively. The curves denote the average
performance (median value over the 20 runs) of the algorithms,
while the error bars plot the interquartile range (IQR) of the
data distribution.

Within 6000 function evaluations, the performance of ALP
and NSGA-II are comparable. However, when progressively
increasing the number of function evaluations from6000 up
to 20000, the quality of the ALP model improves more rapidly
than that of the NSGA-II one. This behavior is observed
for both the performance metrics reported. In detail, ALP
performance converges to an IGDF value less than10−3, about
one order of magnitude better than that of NSGA-II. An even
more pronounced behavior is observed for the IH− metric,
where ALP performance is about two orders of magnitude
better.

The sample percentiles denoted by the error bars demon-
strate a stable behavior of the NSGA-II algorithm. The vari-
ability of ALP results is comparable with the dispersion of the
NSGA-II samples, with the exception of the values observed
at 8000 function evaluations. In this case, ALP data are more
unstable than NSGA-II results. The higher variability of ALP
performance is due to the GP model selection procedure,
which in some occasional ALP runs at 8000 evaluations
generates a model over-fitting the training data. A similar
but less pronounced (variance halved) phenomenon is still
observed at 10000 function evaluation in terms of the IH−

metric (Fig. 14, right). When increasing the number of training

20

0.10.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

IG
D

F

evaluations (x104)

ALP
NSGA2

0.10.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

IH
−

evaluations (x104)

ALP
NSGA2

Fig. 14. Performance metrics (median values) evolution over the number of function evaluations observed in the case of ZDT3.Error bars represent the
IQR of data distribution. The dashed line plots the ALP results, while the solid line shows the NSGA-II performance. In theleft graph, the performance is
measured by the IGDF metric, while the right graph plots the IH− metric evolution.

examples (and thus the number of functions evaluations), a
GP model that fits the data is learnt in each run of ALP and
a high-quality PF approximation is obtained.

Finally let us note that the combined covariance function,
involving a periodic component and an exponential decreaseof
the input correlation with the input distance, was selected94%
of the times by the model selection procedure, confirming that
more informative prior information improves the performance
of Gaussian process regression.

B. Detailed results over the D99 MOP

The second benchmark with disconnected PF is one of the
main classical unconstrained MOPs described in [3] and
originally introduced in [35]. It consists of two real decision
variables, taking values in the range[0, 1]. The optimal solu-
tions lie in the boundary of the decision space, and both the PS
and the PF are disconnected. In detail, the MOP formulation
is defined by the following equations:

min
x

z1 = f1(x) = x1

min
x

z2 = f2(x) = g(x) ∗ h(x)
subject to

g(x) = 1 + 10x2

h(x) = 1− (f1(x)
g(x))

α − f1(x)
g(x) ∗ sin(2πqf1(x))

xi ∈ [0, 1], i = 1 . . . 2

The componenth(x) is a parametric function with parameters
α and q. According to the setting used in [3], in our work
the parametersα and q assume the values two and six,
respectively. The parameter q defines the number of discrete
PF curves in a unit interval off1. Therefore, asf1(x) =
x1 ∈ [0, 1], the PF consists of six disconnected curves (Fig. 15
(left)).

To tackle the D99 MOP, the default setting of the NSGA-
II algorithm suggested in the original NSGA-II paper [39] is
adopted, with SBX and polynomial mutation being the opera-
tors for crossover and mutation, respectively. The distribution

indexes for both operators areηc = 20 andηm = 20, respec-
tively. The crossover probability is0.9, while the mutation
probability is 1/n, wheren = 2 is the number of decision
variables of the problem. The population size is set to 100,
and the non-dominated individuals in the tenth generation
(obtained by performing 1000 evaluations of the objective
vectorz) are used to approximate the PF.

The convergence to the Pareto front of both the ALP
and NSGA-II algorithms is depicted in Fig. 17, reporting
the evolution of the IGDF (left graph) and the IH− (right
graph) metrics over the number of function evaluations. The
dashed and solid curves plots the average performance (median
value over 20 runs) of the ALP and NSGA-II algorithms,
respectively, while the error bars plot the interquartile range
(IQR) of the data distribution.

The superior performance of ALP w.r.t. NSGA-II observed
for ZDT3 is confirmed. For both performance metrics, the
quality of the PF approximation returned by ALP rapidly
improves after 300 evaluations, converging to a value smaller
than10−6 after 600 evaluations. On the other hand, after 1000
objective function evaluations the performance of NSGA-
II is still about five orders of magnitude worse than ALP
performance. A stable behavior is observed for both algorithms
when increasing the number of function evaluations.

Fig. 16 compares the PF model learnt by ALP (left) w.r.t.
the approximation generated by NSGA-II (right) when 500
function evaluations are performed (and ALP performance
is converging). Only nine over the 100 individuals of the
NSGA-II population are non-dominated, and only a couple
of them is Pareto-optimal (the IGDF value is equal to0.10).
On the contrary, by interpreting and selecting an informative
set of training data, ALP has recovered an accurate PF model
(asterisk-marked line, overlapping with the solid line denoting
the PF), corresponding to an IGDF value lower than10−5.

Finally, as for the ZDT3 problem, the combined covariance
function including a periodic component was selected more
than the 95% of the times by the model selection procedure
of the ALP algorithm. This result is consistent with intuition,
when observing the boundary of the feasible objective space

21

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

z
1

z 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z
1

z 2

Fig. 15. D99 (left) and TNK (right) problems. The feasible objective space is the gray-shaded area, truncated at the valuez2 = 1.5 in the case of the D99
benchmark. The black thin line represents the lower boundaryof the space, where the disconnected PF is formed by the bold-marked curves.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

z
1

z 2

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

z
1

z 2

Fig. 16. (Left) Sample model of the D99 PF returned by ALP with 500 function evaluations. (Right) Sample discrete PF approximation obtained when
running NSGA-II with the same computational budget. The non-dominated individuals in the current NSGA-II generation are shown by the cross-marked
points.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

IG
D

F

evaluations (x103)

ALP
NSGA2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

IH
−

evaluations (x103)

ALP
NSGA2

Fig. 17. Performance metrics (median values) evolution over the number of function evaluations observed in the case of D99. Error bars represent the IQR of
data distribution. The dashed line plots the ALP results, while the solid line shows the NSGA-II performance. In the left graph, the performance is measured
by the IGDF metric, while the right graph plots the IH− metric evolution.

22

in Fig. 15 (left).

C. Detailed results over the TNK MOP

Tanaka’s constrained MOP [36] (TNK) has two objectives
and a couple of non-linear constraints. The decision space
coincides with the objective space (thus the Pareto set is equal
to the Pareto front). The formulation of the problems is as
follows:

min
x

f1(x) = x1

min
x

f2(x) = x2

s.t. (x1)
2 + (x2)

2 ≥ 1 + 0.1 ∗ cos(16 arctan(x1

x2
))

(x1 − 1
2)

2 + (x2 − 1
2)

2 ≤ 1
2

0 < x1, x2 ≤ π

Each Pareto-optimal solution lies on the first constraint bound-
ary. The non-convex (partial convex and concave shape) and
disconnected PF is depicted in Fig. 15 (right).

In our experiments, we employ the specific setting of the
NSGA-II parameters for the TNK problem available with the
original NSGA-II code. The distribution indexes for the SBX
crossover and the polynomial mutation operators areηc =
5 and ηm = 5, respectively. The initial population of size
200 is allowed to evolve for 300 generations, with crossover
probability set to0.9 and mutation probability equal to0.5.

Fig. 18 reports the performance of ALP and NSGA-II over
this problem. The quality of the PF approximation returned by
ALP converges to the IGDF value of4e−3 within 6000 func-
tion evaluations. When considering a bounded computational
budget of 600 up to 6000 function evaluations, the results
by NSGA-II are from two up to five times worse than ALP
performance. However, after 12000 function evaluations, the
rank of the algorithms changes, with NSGA-II asymptotically
dominating ALP. As a matter of fact, ALP learns a reasonable
approximation within much fewer function evaluations than
NSGA-II, but it misses a small portion of the PF located
in the interval [0.9, 1] on the x-axis (see Fig. 19 (middle
left)). This weakness is due to the poor quality of the training
examples generated in the interval considered. On the other
hand, NSGA-II reaches a uniform spread of the individuals
of the population over the whole PF, but at a computational
cost sensibly larger that the number of function evaluations
performed by ALP at convergence. For example, Fig. 19 (top
left) shows a sample PF model recovered by ALP employing
600 function evaluations. The top right graph reports the
approximation of the PF generated by NSGA-II with the same
computational budget. The middle graphs show the PF gener-
ated by ALP (left) and NSGA-II (right) when ALP converges.
The NSGA-II has not recovered portions of the second, third
and fourth disconnected PF components (numbering from left
to right) which ALP has accurately modeled. Finally, the graph
at the bottom reports an example of the accurate approximation
obtained by NSGA-II when6 × 104 function evaluations are
performed, improving the sub-optimal approximation showed
in the middle right graph.

D. Detailed results over the KUR MOP

The Pareto set of Kursawe’s MOP [37] (KUR) consists of
several disconnected and asymmetric areas in the decision
space. The PF is formed by three non-convex disconnected
curves (Fig. 20 (left)). The formulation of the problem consists
of the following equations:

min
x

f1(x) =
∑n−1

i=1 (−10e(−0.2
√

x2
i
+x2

i+1
))

min
x

f2(x) =
∑n

i=1 |xi|0.8 + 5 sin(x3i)

s.t. 5 ≤ xi ≤ 5, i = 1, 2, 3

For this problem, the sequential quadratic programming algo-
rithm [30], [31] used by ALP to generate training examples
(Eq. (3)) returns extremely poor-quality approximations of the
Pareto optimal solutions. Based on this very noisy training
information, an accurate PF model cannot be recovered.

Figure 20 (right) shows the training examples (squares)
at the 30-th refinement iteration during a single run of ALP.
Note the large amount of noise affecting training examples
for z1 > −17. In this scenario, ALP cannot provide an
accurate approximation (solid line in figure) of the PF (dotted
line). However, ALP can easily realize the poor quality of
the learned model by measuring its predictive uncertainty,
which is exceptionally large also in regions densely populated
of training examples. The ALP framework is not bound to
a specific optimization algorithm for recovering supervision
on training examples (Eq. (3)). Alternative approaches canbe
explored when the current choice does not provide accurate
results, e.g., Gaussian Processes for global optimization[40].
An advantage of using GP would be a substantial reduction in
the number of function evaluations for solving Eq. (3), thus
further reducing the overall number of function evaluations of
ALP (see Discussion). Another possible countermeasure con-
sists of inverting dependent and independent objectives, i.e.,
considering the objectivez1 as a function ofz2 (z1 = g(z2)),
rather than the other way around, in case this results in a
simpler optimization task.

IX. EFFICIENCY OF UNCERTAINTY SAMPLING

In order to learn a model of the PF, ALP generates training
examples in the regression domain. However, generating su-
pervised information is expensive, as it involves the evaluation
of the objective functions of the MOP. In order to decrease
the computational cost of the learning process, the next query
instance selected by ALP is the pointẑ1 in the regression
domain maximizing the predictive uncertainty of the learntPF
model (uncertainty sampling). The adoption of the uncertainty
sampling principle motivates the choice of the GPR method,
which can quantify the uncertainty of the predictive model.

The following experiments test the efficiency of the uncer-
tainty sampling (UNC) principle, by comparing it with an
alternative query selection strategy. The competing method
consists of picking the query points uniformly at random
within the regression domain. The random selection principle
(RND) is less informed than the UNC method, as it does
not exploit the learnt PF model. However, the RND principle

23

0.12 0.24 0.6 1.8 3 6 12 24 48
0.001

0.002

0.004

0.01

0.02

0.05

0.1

0.2

0.5

IG
D

F

evaluations (x103)

ALP
NSGA2

0.12 0.24 0.6 1.8 3 6 12 24 48
0.001

0.002

0.004

0.01

0.02

0.05

0.1

0.2

0.5

IH
−

evaluations (x103)

ALP
NSGA2

Fig. 18. Evolution of the IGDF and IH− performance metrics over the number of function evaluations when solving TNK. The data are presented analogously
to that in Fig. 17, with the exception of the logarithmic x-scale used to represent both the early ALP convergence within 6000 evaluations and the crossover
point of the performance located after 12000 evaluations.

provides a robust approach w.r.t. the general shape of the PF,
thus representing a nontrivial competitor in our settings.

Fig. 21 reports the performance of both the UNC and RND
sampling principles when increasing the number of query
points to solve ZDT3 (top left graph), D99 (top right) and TNK
(bottom graph). The dashed and solid lines refer to the UNC
and the RND strategies, respectively. For both strategies,one
hundred runs of ALP are performed, with different random
seeds. Median values of the IGDF metric over the different
runs are plotted, together with error bars denoting the 25-th
and the 75-th percentiles. Since different stochastic compo-
nents are involved in the ALP framework, the results of our
comparative study are provided with statistical confidence. In
particular, multiple pairwise comparisons among the UNC and
RND samples are performed, one comparison for each of the
different number of query points considered. The Kolmogorov-
Smirnov (KS) test for two independent samples is used, with a
Bonferroni-corrected significance levelα/c, whereα = 0.05
and c = 9 is the number of comparisons performed. The
Bonferroni procedure is known to be conservative, especially
for highly correlated test statistics. That is, it tends to over-
protect from type-I errors at the cost of a lower prevention
of type-II errors. However, in our settings, type-I errors (i.e.,
erroneously stating a different performance among the two
sampling strategies) are considered worse than type-II errors
(i.e., falsely considering equivalent the performance of the
strategies).

For ZDT3 (top left graph), with ten (or less) training exam-
ples, the UNC and RND strategies are statistically equivalent
under a Bonferroni-corrected KS test. With 15 query points,
there is statistical evidence for better results by the RND
method (the p-value is0.003). However, when increasing the
number of training examples, the UNC strategy keeps improv-
ing faster than the RND strategy and significantly outperforms
it if 25 or more query points are generated. With more than 25
examples, the order of magnitude of the observed p-values is
lower than1e−14, providing strong evidence against the null
hypothesis of equivalent performance.

The observed behavior is consistent with intuition. The

limited amount of supervised information generated by few
training examples, either selected passively (i.e., at random)
or actively, does not enable the learning of the PF. However,
when a larger number of training instances is considered, the
UNC strategy yields better results than using the less informed
RND method. Finally, the UNC results are more stable than
the RND results, as clearly showed by the error bars.

The top right graph refers to the D99 MOP. The previously
observed behavior is confirmed. In particular, there is no
statistically significant difference among the RND and UNC
performance with ten (or less) training examples. When 15
or 20 training examples are used, the RND performance is
statistically better than the UNC strategy results, with observed
p-values equal to1e−4 and 1e−7, respectively. However, a
superior asymptotic performance of the UNC method over the
RND strategy is observed with large statistical confidence:the
order of magnitude of the p-values is lower than or equal
to 1e−20 when the number of query points is larger than 30
(the p-value1e−8 is observed for 25 examples). This result is
consistent with the qualitative insights provided by the graphs:
with more than 25 examples the RND and UNC locations
are clearly different and the error bars do not overlap. The
asymptotic difference among the performance of the RND and
UNC strategies is even more pronounced that that observed
for ZDT3. The more complicated shape of the D99 PF, which
consists of six non-convex disconnected curves w.r.t. the five
convex components of the ZDT3 PF, is a likely explanation
for this behaviour.

The experiments over TNK confirm the better performance
of the UNC strategy, whose curve dominates the curve corre-
sponding to the RND technique. As for D99, with 10 and 15
training examples there is no significant difference between the
two strategies. However, with more than 15 training examples
UNC significantly outperforms RND: the p-values lower than
1e−6 provide strong support for the superiority of the UNC
sampling strategy.

24

0 0.2 0.4 0.6 0.80.9 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z
1

z 2

0 0.2 0.4 0.6 0.8 0.9 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z
1

z 2

0 0.2 0.4 0.6 0.80.9 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z
1

z 2

0 0.2 0.4 0.6 0.8 0.9 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z
1

z 2

0 0.2 0.4 0.6 0.8 0.9 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z
1

z 2

Fig. 19. (Top left) Sample PF model (asterisk-marked curve) returned by ALP after 600 function evaluations (Top right) Sample discrete PF approximation
obtained when running NSGA-II with the same computational budget. The non-dominated individuals in the current NSGA-II generation are shown by the
cross-marked points. (Middle left) Sample PF model returned byALP at convergence, missing a portion of PF disconnected component located in the interval
[0.9, 1]. (Middle right) Sample discrete PF approximation by NSGA-II obtained when ALP converges. (Bottom) Sample PF approximation by NSGA-II
requiring6× 104 function evaluations.

X. D ISCUSSION

This work introduces the Active Leaning of Pareto fronts
(ALP) algorithm. While current state of the art algorithms for
MOPs are developed within the Evolutionary framework, ALP
adopts a different strategy. Pareto-optimal objective vectors
are generated by combining the active learning paradigm with
the solution of a scalarized optimization problem. The Pareto-
optimal objective vectors recovered are used as training exam-
ples to learn a model of the PF. The model is iteratively refined
until the information gain obtained by the new candidate

training examples becomes negligible. The information gain
is estimated by the maximum predictive uncertainty of the
learnt model in the regression domain.

ALP enables ananalytical representation for the PF, which
simplifies the decision making process. When the analytical
PF representation is available, the decision maker (DM) is
free to select and compareany Pareto-optimal solution, in
particular within her preferred region. Once the favourite
Pareto-optimal vector is selected, an associated Pareto-optimal
solution is generated by solving a single instance of the

25

−20 −19 −18 −17 −16 −15 −14
−15

−10

−5

0

5

10

z
1

z 2

−20 −19 −18 −17 −16 −15 −14
−15

−10

−5

0

5

10

z
1

z 2

Fig. 20. (Left) The objective space of the Kursawe’s (KUR) MOP. The black thin line represents the boundary of the feasible objective space, with the three
bold-marked curves and the isolated point(−20, 0) forming the disconnected PF. (Right) The noisy training examples (squares) generated by ALP and its
inaccurate prediction (solid line). The large shaded area,denoting the 95% confidence region of the predictive model, clearly shows that ALP cannot interpret
the (noisy) training data. The predictive uncertainty is exceptionally high also in regions containing several training examples (e.g., the interval [-18,-17] in
the figure).

10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

IG
D

F

tr. exa. #

RND
UNC

10 15 20 25 30 35 40 45 50
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

IG
D

F

tr. exa. #

RND
UNC

10 15 20 25 30 35 40 45 50
0.001

0.01

0.02

0.05

0.1

IG
D

F

tr. exa. #

RND
UNC

Fig. 21. Comparison between active selection of training examples based on model uncertainty and passive selection based on random sampling. The dashed
lines plots the uncertainty sampling results (i.e., the performance of the original ALP algorithm), while the solid lines show the performance of the ALP
variant with uncertainty sampling replaced by random sampling. Median IGDF values over 100 runs are plotted for an increasing number of training examples,
with error bars representing the IQR of data distribution. The top left and the top right graphs refer to ZDT3 and D99 respectively, while the bottom graph
reports the results obtained over TNK.

26

scalarized optimization problem (3). Furthermore, depending
on the optimization algorithm adopted for problem (3), ALP
may not require any derivative information. The experimental
results on the RM-MEDA benchmark show that ALP on
average generates theanalytical PF representation within a
lower number of function evaluations than that required by
the state-of-the-art MMEA algorithm to provide a discrete PF
approximation. On the ZDT3 and D99 MOPs with discon-
nected PF, better results are obtained when applying ALP
rather than the well-known NSGA-II algorithm (e.g., ALP
IGDF value is asymptotically one and five orders of magnitude
better than NSGA-II performance on the above mentioned
problems). For the TNK MOP, NSGA-II needs more than
12000 function evaluations to outperform ALP. With a lower
number of function evaluations, ALP performance is from two
up to five times better. ALP cannot learn an accurate model
of the KUR PF, due to the high noise affecting the training
set. However, ALP can detect the poor quality of the learnt
model, by simply observing the predictive variance, in this
case exceptionally high, also in regions densely populatedby
training examples.

We plan to extend this work along different directions. An
incremental approach can be adopted to tackle MOPs with
more than two objectives. First, the Pareto-optimal solution
with minimum distanced from the ideal point is identified.
Then m regression tasks are generated, withm being the
number of objectives. The i-th task considers the objective
zi as the dependent variable, while the regression domain
is formed by the points within distanced from the ideal
point. By solving each regression task independently,m sets
of approximated Pareto-optimal vectors are obtained. They
are then merged into a single training set, used to learn the
analytical PF representation.

We will also consider the inclusion of priormonotonicity
information [41] in the Gaussian process regression, as any
connected Pareto front can be represented by a monotone
function. The investigation of strategies to reduce the computa-
tional effort, in terms of MOP objectives evaluation, required
to solve the problem (3) is another interesting direction for
future research. Approaches tacklingexpensive optimization
by the generation of surrogate models are suitable for this
purpose. Consider, for example, Gaussian processes designed
for global optimization of unknown functions [40]. Our future
efforts will also be devoted to model simultaneously the Pareto
front in the objective spaceand the Pareto set (PS) in the
decision space, as in many real-world tasks an accurate PS
approximation may improve the human decision making pro-
cess [24]. Furthermore, by equipping ALP with a mechanism
for learning the DM preferences, the search may focus on the
most relevantareas of the PF, guided by the user feedback [42],
[43]. The incorporation of the DM preferences reduces the
waste of computational resources occurring when modeling
PF regions which are not of any interest for the user. Finally,
possible extensions of ALP to recover the PF underchanging
conditions (dynamic multi-objective optimization [44], [45])
will be explored.

ACKNOWLEDGMENTS

This research was partially supported by grant PRIN
2009LNP494 (Statistical Relational Learning: Algorithmsand
Applications) from Italian Ministry of University and Re-
search.

REFERENCES

[1] K. Miettinen, Nonlinear Multiobjective Optimization, ser. International
Series in Operations Research and Management Science. Kluwer
Academic Publishers, Dordrecht, 1999, vol. 12.

[2] K. Miettinen, F. Ruiz, and A. Wierzbicki, “Introductionto Multiobjective
Optimization: Interactive Approaches,” inMultiobjective Optimization:
Interactive and Evolutionary Approaches. Springer Verlag Berlin,
Heidelberg, 2008, pp. 27–57.

[3] C. C. Coello, G. Lamont, and D. van Veldhuizen,Evolutionary Algo-
rithms for Solving Multi-Objective Problems, 2nd ed., ser. Genetic and
Evolutionary Computation. Berlin, Heidelberg: Springer, 2007.

[4] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32 – 49,
2011.

[5] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski, “Information
Retrieval Perspective to Nonlinear Dimensionality Reduction for Data
Visualization,”Journal of Machine Learning Research, vol. 11, pp. 451–
490, 2010.

[6] C. Rasmussen and C. Williams,Gaussian processes for machine learn-
ing, ser. Adaptive computation and machine learning. MIT Press, 2006.

[7] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with active
learning,” Machine Learning, vol. 15, no. 2, pp. 201–221, 1994.

[8] D. J. Lizotte, M. H. Bowling, and S. A. Murphy, “Efficient Rein-
forcement Learning with Multiple Reward Functions for Randomized
Controlled Trial Analysis,” inProceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,
Israel, J. Frnkranz and T. Joachims, Eds. Omnipress, 2010, pp. 695–
702.

[9] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker,
“Empirical evaluation methods for multiobjective reinforcement learning
algorithms,”Machine Learning, vol. 84, no. 1-2, pp. 51–80, Jul. 2011.

[10] A. Lovison, “Singular Continuation: Generating Piecewise Linear Ap-
proximations to Pareto Sets via Global Analysis,”SIAM Journal on
Optimization, vol. 21, no. 2, pp. 463–490, 2011.

[11] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A Regularity Model-Based
Multiobjective Estimation of Distribution Algorithm,”IEEE Transac-
tions on Evolutionary Computation, vol. 12, no. 1, pp. 41–63, 2008.

[12] E. Snelson, “Flexible and efficient Gaussian process models for machine
learning,” Ph.D. dissertation, Gatsby Computational Neuroscience Unit,
University College London, 2007.

[13] D. J. C. MacKay,Information theory, inference, and learning algorithms.
Cambridge University Press, 2003.

[14] M. Gibbs, “Bayesian Gaussian Processes for Classification and Regres-
sion,” Ph.D. dissertation, University of Cambridge, Cambridge, U.K.,
1997.

[15] D. J. C. MacKay, “Comparison of Approximate Methods for Handling
Hyperparameters,”Neural Computation, vol. 11, no. 5, pp. 1035–1068,
1999.

[16] B. Settles, “Active Learning Literature Survey,” University of Wisconsin-
Madison, Tech. Rep. 1648, 2009.

[17] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges.”Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, 2011.

[18] M. Pilát and R. Neruda, “Aggregate meta-models for evolutionary mul-
tiobjective and many-objective optimization,”Neurocomputing, 2013, in
press. Digital version available on-line, as of Dec 21 2012.

[19] L. Marti, J. Garcia, A. Berlanga, C. A. Coello Coello, and J. M. Molina,
“On Current Model-Building Methods for Multi-Objective Estimation
of Distribution Algorithms: Shortcomings and Directions forImprove-
ment,” Grupo de Inteligencia Artificial Aplicada, Universidad Carlos III
de Madrid, Colmenarejo, Spain, Tech. Rep. GIAA2010E001, 2010.

[20] P. A. Bosman and D. Thierens, “Multi-objective Optimization with the
Naive MIDEA,” in Towards a New Evolutionary Computation, ser.
Studies in Fuzziness and Soft Computing, J. Lozano, P. Larraaga, I. Inza,
and E. Bengoetxea, Eds. Springer Berlin Heidelberg, 2006, vol. 192,
pp. 123–157.

27

[21] M. Laumanns and J. Ocenasek, “Bayesian Optimization Algorithms for
Multi-objective Optimization,” inSeventh International Confenrence on
Parallel Problem Solving From Nature (PPSN VII), ser. Lecture Notes
in Computer Science. Springer, 2002, pp. 298–307.

[22] M. Costa and E. Minisci, “MOPED: A Multi-objective Parzen-Based
Estimation of Distribution Algorithm for Continuous Problems,” in Evo-
lutionary Multi-Criterion Optimization, ser. Lecture Notes in Computer
Science, C. Fonseca, P. Fleming, E. Zitzler, L. Thiele, and K.Deb, Eds.
Springer Berlin Heidelberg, 2003, vol. 2632, pp. 282–294.

[23] H. Karshenas, R. Santana, C. Bielza, and P. Larraaga, “Multi-objective
Optimization with Joint Probabilistic Modeling of Objectives and Vari-
ables,” inEvolutionary Multi-Criterion Optimization, ser. Lecture Notes
in Computer Science, R. Takahashi, K. Deb, E. Wanner, and S. Greco,
Eds. Springer Berlin Heidelberg, 2011, vol. 6576, pp. 298–312.

[24] A. Zhou, Q. Zhang, and Y. Jin, “Approximating the Set of Pareto-
Optimal Solutions in Both the Decision and Objective Spaces by an
Estimation of Distribution Algorithm,”IEEE Transactions on Evolu-
tionary Computation, vol. 13, no. 5, pp. 1167–1189, 2009.

[25] Q. Zhang, W. Liu, E. P. K. Tsang, and B. Virginas, “Expensive Multiob-
jective Optimization by MOEA/D With Gaussian Process Model,” IEEE
Transactions on Evolutionary Computation, vol. 14, no. 3, pp. 456–474,
2010.

[26] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition,”IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, 2007.

[27] K. Deb, “Multi-objective evolutionary optimization: Past, present and
future,” in Evolutionary Design and Manufacture, I. C. Parmee, Ed.
Springer, London, 2000, pp. 225–236.

[28] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results,”IEEE Transactions on
Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2000.

[29] K. Deb, A. Sinha, and S. Kukkonen, “Multi-objective test problems,
linkages, and evolutionary methodologies,” inProceedings of the 8th
conference on Genetic and evolutionary computation (GECCO06),
Seattle, Washington, USA, ser. GECCO ’06. New York, NY, USA:
ACM, 2006, pp. 1141–1148.

[30] R. Fletcher,Practical Methods of Optimization, (2nd ed.). New York,
NY, USA: John Wiley and Sons, 1987.

[31] M. Powell, “Variable Metric Methods for Constrained Optimization,”
in Mathematical Programming: The State of the Art, A. Bachem,
M. Grotschel, and B. Korte, Eds. Springer Verlag, 1983, pp. 288–311.

[32] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, “An interior
algorithm for nonlinear optimization that combines line search and trust
region steps,”Mathematical Programming, vol. 107, no. 3, pp. 391–408,
2006.

[33] E. Zitzler and L. Thiele, “Multiobjective OptimizationUsing Evolu-
tionary Algorithms - A Comparative Case Study,” in5th International
Conference on Parallel Problem Solving from Nature (PPSN V), ser.
Lecture Notes in Computer Science, vol. 1498. Springer, 1998, pp.
292–301.

[34] K. Deb, K. Miettinen, and S. Chaudhuri, “Toward an Estimation of
Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search
Approaches,”IEEE Transactions on Evolutionary Computation, vol. 14,
no. 6, pp. 821–841, 2010.

[35] K. Deb, “Multi-objective Genetic Algorithms: Problem Difficulties and
Construction of Test Problems.”Evolutionary Computation, vol. 7, no. 3,
pp. 205–230, 1999.

[36] M. Tanaka, “GA-based decision support system for multi-criteria op-
timization,” in IEEE International Conference on Systems, Man and
Cybernetics, vol. 2. IEEE, 1995, pp. 1556–61.

[37] F. Kursawe, “A Variant of Evolution Strategies for Vector Optimization,”
in Proceedings of the First Workshop on Parallel Problem Solving from
Nature, ser. Lecture Notes in Computer Science (LNCS), vol. 496.
Springer, 1991, pp. 193–197.

[38] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,”IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[39] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: NSGA-II,”IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182–197, 2002.

[40] M. A. Osborne, R. Garnett, and S. J. Roberts, “Gaussian Processes
for Global Optimization,” in3rd International Conference on Learning
and Intelligent Optimization (LION 3), ser. Lecture Notes in Computer
Science. Springer, 2009, pp. 1–15.

[41] J. Riihimäki and A. Vehtari, “Gaussian processes with monotonicity
information,” Journal of Machine Learning Research - Proceedings
Track, vol. 9, pp. 645–652, 2010.

[42] R. Battiti and A. Passerini, “Brain-Computer Evolutionary Multi-
Objective Optimization (BC-EMO): a genetic algorithm adapting to
the decision maker,”IEEE Transactions on Evolutionary Computation,
vol. 14, no. 5, pp. 671–687, 2010.

[43] P. Campigotto, A. Passerini, and R. Battiti, “Handling concept drift in
preference learning for interactive decision making,” inOnline proc.
of the International Workshop on Handling Concept Drift in Adaptive
Information Systems (HaCDAIS 2010), 2010.

[44] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization
problems: test cases, approximations, and applications,”IEEE Transac-
tions on Evolutionary Computation, vol. 8, no. 5, pp. 425–442, 2004.

[45] E. Tantar, A.-A. Tantar, and P. Bouvry, “On dynamic multi-objective
optimization, classification and performance measures,” inProceedings
of the IEEE Congress on Evolutionary Computation (CEC 2011), June
5-8, 2011, New Orleans, LA, USA. IEEE, 2011, pp. 2759–2766.

