In this paper we describe the design of digital architectures suitable for the implementation of measurement data classification based on Support Vector Machines (SVMs). The performance of such architectures are then analyzed. The proposed approach can be applied for solving identification and inverse modelling problems, and for processing complex measurement data. Two very different case studies where real-time processing is of paramount importance are discussed: a nonlinear channel equalization and a high energy physics classification task.

Digital Architectures for Adaptive Processing of Measurement Data / Boni, Andrea; Petri, Dario; Biasi, Ivan. - ELETTRONICO. - (2004).

Digital Architectures for Adaptive Processing of Measurement Data

Boni, Andrea;Petri, Dario;
2004-01-01

Abstract

In this paper we describe the design of digital architectures suitable for the implementation of measurement data classification based on Support Vector Machines (SVMs). The performance of such architectures are then analyzed. The proposed approach can be applied for solving identification and inverse modelling problems, and for processing complex measurement data. Two very different case studies where real-time processing is of paramount importance are discussed: a nonlinear channel equalization and a high energy physics classification task.
2004
Trento, Italia
Università degli Studi di Trento. DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY
Digital Architectures for Adaptive Processing of Measurement Data / Boni, Andrea; Petri, Dario; Biasi, Ivan. - ELETTRONICO. - (2004).
Boni, Andrea; Petri, Dario; Biasi, Ivan
File in questo prodotto:
File Dimensione Formato  
Digital_Architectures_for_Adaptive_Processing_of_Measurement_Data.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 438.28 kB
Formato Adobe PDF
438.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/359063
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact