
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY
  

38050 Povo – Trento (Italy), Via Sommarive 14 
http://www.dit.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
 
 
DIGITAL ARCHITECTURES FOR ADAPTIVE PROCESSING OF 
MEASUREMENT DATA 
 
 
 
 
 
Andrea Boni, Dario Petri, Ivan Biasi 
 
  
 
 
 
 
June 2004 
 
Technical Report # DIT-04-061 
 
 
 
 
 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 



Digital Architectures for Adaptive Processing of Measurement Data 
 

Andrea Boni, Dario Petri, Ivan Biasi 
 

DIT - University of Trento, Via Sommarive, 14, 38050 Trento Italy, andrea.boni@ing.unitn.it  
 

Abstrac t- In this paper we describe the design of digital architectures suitable for the implementation 
of measurement data classification based on Support Vector Machines (SVMs). The performance of 
such architectures are then analyzed. The proposed approach can be applied for solving identification 
and inverse modelling problems, and for processing complex measurement data. Two very different 
case studies where real-time processing is of paramount importance are discussed: a nonlinear channel 
equalization  and a high energy physics classification task. 
 

I. Introduction 
 
 In the last few years the area of Machine Learning (ML) has gained the attention of the scientific 
community, especially when used to solve difficult industrial or scientific applications, such as fault 
recognition, digital signal processing, pattern recognition, etc. [4]. By using ML--algorithms a non--
linear unknown relationship is estimated on the basis of a set of input/output measurements Z. Some 
examples are the well--known Artificial Neural Networks. Recently, new inductive paradigms have 
been proposed with success: the Kernel--Based Methods (KBMs) [9]. KBMs are studied in the context 
of the Statistical Learning Theory (SLT), formulated by Vapnik and Chervonenkis in the '70s [10], and 
are applied in many fields due to their robustness and the presence of a solid theoretical background. 
An example of KBMs are the well known Support Vector Machines (SVMs). Basically, an SVM 
induces an input/output relationship from i/o measurements Z by means of an optimization algorithm 
(OA), which consists in the resolution of a constrained quadratic problem, and generates a vector of 
parameters used to provide the output of a new input during the so called estimation phase (EP). 
Usually, in the EP the real--time processing is of paramount importance for the application, therefore 
the hardware implementation of KBMs has become an important area of research. After the first 
preliminary studies, several analog and digital implementations of KBMs for both OA and EP have 
been proposed [3], [6]. Here, we discuss the digital implementations on FPGA--based devices of the 
EP. Our aim is the implementation of a processing system for solving inverse modeling problems and 
for the classification of complex measurement data. As a case study, here we consider two different 
applications: a communication channel equalization, characterized by few parameters, and a scientific 
application, such as a tagging problem of High Energy Physics (HEPs) experiments, where a big 
amount of measures must be processed in real time. In this paper our aim is to describe the 
architectures, their characteristics and performances when used to solve the above problems. 
 

In section II we briefly describe the problem formulation and the basic notation. In section III we 
provide a brief description of architectures, whilst in section IV we discuss simulation results and 
performance for the two considered applications. Finally in section V some conclusions are given. 
 

II. Problem formulation and basic notation 
 

A general inverse modelling problem is defined as follows: a discrete signal u(n)=±1, acting as the 
input of a non linear discrete system, having unknown dynamics, must be estimated on the basis of the 
signal x(n) observed at the output of the system itself. As the unknown system can introduce a 
correlation on the signals, several output samples are observed in order to provide an input signal 
estimate ( )Dnu −ˆ , where D represents the intrinsic delay of the estimator. In particular such an 

estimate is given on the basis of the r-dimensional feature vector: ( ) ( ) ( )[ ]Tr
n rnxnxnxx 1,,1,)( +−−= h , 

where r is the number of samples used to provide a single estimate. In order to build such an estimator 
KBMs use a set of input/output samples, also called the training set: ( ){ }N
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of input measures. This is also the case of a general measurement system, where a set of measures each 
one composed by an r-attributes vector must be classified according to a given rule. Typical 
classification problem are in the field of pattern recognition, or the classification of High Energy 
Physics  [1]. Thus, our problem can be defined in the following way: given a set of measures Z, 
obtained by an unknown measurement system, provide its “best” relationship, from a “generalization” 



point of view. The SLT establishes the conditions under which such a relationship is the best [8]. 
SVMs are a special kind of KBMs, and their classification functions belong to the following class: 
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that is a weighted summation of kernels K( ), where { }NiiSV i ,,1;0: �=≠= α  is the index set of 
the so called Support Vectors, that are the only input samples important for the classification. Typical 
classes of Kernel functions are the linear, the Gaussian (having width 2σ ), and the polynomial ones 
[9]. Let us detail in the following how (1) is induced from Z (the reader can find more details in 
[9],[10]). In general, the estimation function for a two class classification problem is defined by finding 
a separating hyperplane  

( ) ( )( ) ( )( )bxwDnu r
n

Tr +⋅=− sgnˆ             (2) 
According to the SLT the best hyperplane is the one that maximizes the margin, defined as the 

maximum distance between the closest samples belonging to the two different classes of samples [10], 
and lying on the hyperplanes ( )( ) ( ) 1±=+⋅ bxw r

n

Tr . These samples are the most important for the 

classification and are indicated as the Support Vectors (SVs). Such a margin is defined as ( )rw/1 . 
Unfortunately, in real-world problems, the input samples are often no-linearly separable (it is 
impossible a classification of all the input measurements), thus one should map the input vector onto a 
new feature space, by using a non-linear function ϕ( ), where the separating hyperplane there exists. 
Moreover, for model complexity reasons, usually one prefers to accept some errors on the input 
measures Z, so a complexity parameter C is introduced to trade-off the generalization performance (the 
error on a new vector) and the error on Z. The final problem to be optimize is given by the following 
primal: 
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Usually, for practical reason, one does not directly solve (3), but its dual obtained by introducing N 
Lagrange multipliers for each constrains, and by minimizing the Lagrangian function [9][10]: 
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Furthermore, it is easy to see that ( ) ( )( )r
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using dot products of the form ( )( ) ( )( )r
j

r
i xx ϕϕ ⋅ , one can introduce kernel functions K( ) realizing dot-

products in the feature space (in the mathematical literature this is known as the Reproducing Kernel 
Hilbert Space). Thus, the final estimation function is given by (1). 
 

III. System Architectures 
 

In order to implement eq. (1), we designed and tested several FPGA based architectures using a 
Xilinx Virtex XC2V1000 [11]. Hardware platforms suitable for the execution of the tasks described in 
the previous section are systems able to change at run-time their configuration in order to carry out 
different processing algorithms. Our choice is motivated by the versatility offered by the emerging 
FPGA technologies, which permit one to use reconfigurable hardware with embedded block RAMs, 
multipliers, hard-processors (see for example the Xilinx Virtex II-Pro) and advanced soft-
microprocessors cores (see for example the Xilinx Pico and Micro Blaze). Such hardware platforms 
allows high-level hardware/software co-synthesis of complete Systems-on-Chip (SoC) to implement 
complex digital signal processing algorithms like the SVM [4]. Examples of FPGA implementation of 
neural hardware are also reported in the literature [7]. 
 

The advantage of our proposal consists in the full digital design implementation. In fact the high 
level description of the design (VHDL), allows one to easily change the implementation parameters in 
order to fit the requirements of the application to be solved. In particular, we designed several versions 
for the implementation of the Gaussian Kernel by using both a special purpose module based on the 
CORDIC algorithm [2] and the embedded Block RAMs (BRAMs) of the FPGA, used in order to map a 



simple Look Up Table (LUT). These implementations provide different performance in terms of 
efficiency (such as the classification error), speed and area utilization.  
 

In [4] we discussed the performance of a SVM-based reconfigurable architecture for solving an 
inverse modeling problem, in particular we focused our attention on the design of the SVM model. 
Here we provide details on the digital architecture. The general block-scheme of such architecture is 
provided in Figure 1. A Xilinx MicroBlaze [11] microprocessor acts as the supervisor of the System, 
connecting the on-chip memory, which stores the alphas, the OFF-chip memory, used when the number 
of the SVs exceeds the available on-chip memory, the UART for I/O communication and the KTRON 
core, implementing eq. (1). The MicroBlaze is a 32-bit Harvard Bus RISC architecture, of 900-cells 
size working at the speed of 125 MHz, and having 32 general purpose registers, with 3 operand 
instruction format, and several special purpose buses, as reported in Figure 1. As a development 
platform we used the Xilinx Embedded Development Kit (EDK), which permits one to easily integrate 
C/VHDL code. In practice, the MicroBlaze is programmed using C code, whilst the KTRON is 
described by using the VHDL code. 

 
Figure 1. General Architecture 

 
The basic structure of the KTRON core is showed in Figure 2. K_type_RAM is a simple flip-flop 

containing a flag indicating which of the two kernels is used. Ktron_drive contains the RAMs for both 
the set of support vectors (when the on-chip memory is used) and the input )(rx  to be processed. 
Pre_kernel is the first computation-unit. It computes an inner product or a squared norm according to 
the value in K_type_RAM. The division by 22σ  can be  implemented in two different way: 1) by 
approximating 22σ  to the nearest power of 2 and thus only a simple shift register is necessary for the 
computation; 2) by getting and storing in a register the value 22/1 σγ = , and by using the Virtex II 
embedded fast 18x18MULT multiplier. The latter solution is characterized by more precision; the only 
drawback is the use of an important resource like the 18x18MULT. Kernel is the second computational 
unit; if a Gaussian kernel is selected, it computes the exponential function. We used two different 
implementations: in a first version we mapped the exponential function onto a simple Look-Up-Table 
(LUT) by using the embedded block RAMs of the Virtex II; in a second version we designed a VHDL 
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CORDIC-based module [2], partially modified in order to extend the convergence range [6]. The 
CORDIC algorithm (COordinate Rotational DIgital Computer) is an elegant method to iteratively 
compute complex functions by using only adders and shift registers. Its main advantage consists in the 
fact that no multipliers or memory are required, thus allowing exact mathematical computations by 
using few FPGA slices. 
The last computation unit is out_mac, a simple multiply-and-accumulate block. Ktron_ctrl is the main 
control unit of the whole system; it decodes the received commands and manages control signals 
connected to input data. 
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Ktron_Drive

Pre_Kernel

Kernel

Out_MAC

Ktron_ctrl

CLK

AddrIN Req Ack CS

DataIN

OutACKReady

DataOUT

DataBUS
ControlBUS

 
 

Figure 2. The KTRON architecture. 
 
 

IV. Applications, Simulation results and performance 
 

The first of our two applications is a typical equalization problem (EQP) of a transmission channel, 
characterized by few measures, and where the non linear effects of the channel are modelled as a FIR 
filter [3],[5]. We used a model as defined in [5], by using r=2 and different sample data (N=32,64,128). 
The second application is an HEP class of experiments for top/anti-top ( tt ) quark couples detection. 
Data are composed by a two-classes set of samples organized as follows: a first half, used for training 
comes from the “RUN I” experiments at the Collider Detector at Fermilab (CDF), and the other class 
comes from a simulation of the tt  generation event. A real time hardware is designed in order to fast 
classify the generation events and neglect the real-world background events [1]. Each sample is 
composed by r=8 measurements representing the main characteristics of the experiment. We used 
N=4190 training samples and 4190 test samples. Model selection to find the hyper-parameters C and 

22σ  has been carried out by using bootstraps techniques [1]. These, are two very different application. 
The former, is characterized by few parameters. In particular we obtained a results characterized by 
less then 20 SVs, whilst the latter is characterized by 2200 SVs. Details on classification and model 
selection can be found in references [1],[3],[5], here we report the performance of the architectures.  

 
The architectures described in the previous section have been implemented on a Xilinx Virtex II 

V2MB1000 MEMEC development board by using the Xilinx ISE 6.2i as development tool, and the 
Xilinx XST as a synthesis tool [11]. Virtex -IIV2MB1000 provides a complete platform and allows one 
to build complex designs and applications and full Systems-on-Chip with partial reconfiguration. The 
system Board includes a 16MBx16 DDR memory, the 1 million gate Xilinx Virtex II FPGA device is 



composed by a matrix of 40x32 CLBs, 40 MULT18x18s multipliers and 40 BRAMs [11]. These 
features allowed us to quickly and effectively meet our design requirements. 
 

In the EQP case we designed both a simple 1024x16 LUT and a 12-bit CORDIC module to map the 
exponential function. The results on the classification rate are comparable, whilst the results on the 
synthesis are quite different, as reported in table 1. In practice, the main difference consists in the clock 
speed, that is 100 MHz and 50 MHz for the LUT and CORDIC case respectively.  
 

 KTRON-
LUT 

KTRON-
CORDIC 

Slices 5.1% 8.7% 
BRAMs 10% 7.5% 
MULT18x18s 5% 7.5% 
speed 100 MHz 50 MHz 

 
Table 1. Synthesis results for the transmission channel equalization problem. 

 
 

In the HEP case, in order to fulfil classification rate requirements, we designed a 14-bit input LUT, 
by obtaining a classification error of 24.1%, and a 14-bit CORDIC module that allowed us to obtain a 
classification error of 23.5%. The results of the synthesis are summarized in Table 2 
 

 KTRON-
LUT 

KTRON-
CORDIC 

Slices 5.5% 10% 
BRAMs 95% 20% 
MULT18x18s 5% 7.5% 
speed 100 MHz 50 MHz 

 
Table 2. Synthesis results for the HEP problem. 

 
 

In practice, in this case almost all the available BRAMs are used in order to store the SVs and LUT. 
This means that few memory is available for other modules (such as the microprocessor, for example). 
The CORDIC requires less memory, but works with a lower clock speed (50 MHz instead of 100 
MHz), and is characterized by a slightly better classification error. 
 

V. Conclusions and discussion 
 
 This work deals with the problem of fast classify sets of measurement data from two different real-
world applications. Our results show the efficiency and robustness of the proposed method, and the 
optimal performance of the architectures implementing a Kernel-based classification algorithm. In 
particular, several different implementation are proposed. The user can choose the preferred one on the 
basis of speed/area trade-off criteria. 
 
 Our design and implementation illustrates a typical example of the advantages achieved by using 
FPGA. Fast development times and reduced efforts are not the only merit of the ‘soft’ approach in 
implementing advanced chips for adaptive processing of measurement data. The generic nature of the 
FPGA building blocks enables the integration of  the arithmetic core of the neural processor, its logic 
control and the general purpose processor. The programmable nature of FPGAs opens up opportunities 
for exploring the architecture and implementing a choice of interfacing protocols at negligible costs. 
Moreover, VHDL design provides a typical example of design re-use and the merits of design 
portability. 
 
 Future work would concentrate on the advantages of integrating a host RISC processor, a module 
for SVM learning and the KTRON, into the FPGA, so as to complete a stand-alone system based on 
the neural approach to solve a variety of application problems. This level of integration has become 
even simpler than ever with the introduction of advanced techniques for dynamic partial 
reconfiguration which allow one to fully exploit the computational power and the area of the FPGA 



chips [11]. High-density FPGAs also make it possible to implement larger SVMs by incorporating 
more than one instance of KTRON on a single device to speed up the computation. 
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