A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade classifier approach and on a specific formulation of the expectation-maximization (EM) algorithm used for the unsupervised estimation of the statistical parameters of the image to be classified. The results of experiments carried out on a multitemporal data set confirm the validity of the proposed approach.

A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images / Bruzzone, Lorenzo; Fernandez Prieto, Diego. - ELETTRONICO. - (2002), pp. 1-18.

A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images

Bruzzone, Lorenzo;
2002-01-01

Abstract

A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade classifier approach and on a specific formulation of the expectation-maximization (EM) algorithm used for the unsupervised estimation of the statistical parameters of the image to be classified. The results of experiments carried out on a multitemporal data set confirm the validity of the proposed approach.
2002
Trento, Italia
Università degli Studi di Trento. DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY
A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images / Bruzzone, Lorenzo; Fernandez Prieto, Diego. - ELETTRONICO. - (2002), pp. 1-18.
Bruzzone, Lorenzo; Fernandez Prieto, Diego
File in questo prodotto:
File Dimensione Formato  
29.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 168.7 kB
Formato Adobe PDF
168.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358454
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact