In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of classifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a new image of the considered site. In this context, two techniques are presented for the unsupervised updating of the parameters of a maximum-likelihood (ML) classifier and a radial basis function (RBF) neural-network classifier, on the basis of the distribution of the new image to be classified. Experimental results carried out on a multitemporal and multisource remote-sensing data set confirm the effectiveness of the proposed system.

Combining Parametric and Non-parametric Algorithms for a Partially Unsupervised Classification of Multitemporal Remote-Sensing Images / Cossu, Roberto; Vernazza, Gianni; Bruzzone, Lorenzo. - ELETTRONICO. - (2002), pp. 1-37.

Combining Parametric and Non-parametric Algorithms for a Partially Unsupervised Classification of Multitemporal Remote-Sensing Images

Bruzzone, Lorenzo
2002-01-01

Abstract

In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of classifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a new image of the considered site. In this context, two techniques are presented for the unsupervised updating of the parameters of a maximum-likelihood (ML) classifier and a radial basis function (RBF) neural-network classifier, on the basis of the distribution of the new image to be classified. Experimental results carried out on a multitemporal and multisource remote-sensing data set confirm the effectiveness of the proposed system.
2002
Trento, Italia
Università degli Studi di Trento. DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY
Combining Parametric and Non-parametric Algorithms for a Partially Unsupervised Classification of Multitemporal Remote-Sensing Images / Cossu, Roberto; Vernazza, Gianni; Bruzzone, Lorenzo. - ELETTRONICO. - (2002), pp. 1-37.
Cossu, Roberto; Vernazza, Gianni; Bruzzone, Lorenzo
File in questo prodotto:
File Dimensione Formato  
24.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 152.13 kB
Formato Adobe PDF
152.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358372
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact