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Abstract. In this paper, we propose a classfication sysem based on a multiple-classfier
architecture, which is amed a updating land-cover maps by using multisensor and/or
multisource remote-sensing images. The proposed system is composed of an ensemble of
classfiers that, once trained in a supervised way on a specific image of a given area, can be
retrained in an unsupervised way to classify a new image of the consdered ste. In this
context, two techniques are presented for the unsupervised updating of the parameters of a
maximumtlikelihood (ML) dassfier and a radid basis function (RBF) neura-network
classfier, on the basis of the digribution of the new image to be dassfied. Experimentd
results carried out on a multitemporal and multisource remote-sensing data set confirm the

effectiveness of the proposed system.

Keywords: mutiple-classfier sysems, unsupervised retraining dgorithms, maximum-
likeihood classfier, radid basis function neurd networks, expectation-maximization

agorithm.

1 Introduction
The increasng availability of remote-sensing images, acquired periodically by satellite sensors

on the same geographical area, makes it extremely interesting to develop monitoring systems



cgpable of automatically producing and regularly updating land-cover maps of the considered
ste. The monitoring task can be accomplished by supervised classification techniques, which
have proven to be effective categorisation tools [1]-[5]. Unfortunately, these techniques
require the avallability of a suitable training set (and hence of ground-truth information) for
each new image of the considered area to be classified. However, in red gpplications, it is
not possible to rely on suitable ground truth information for each of the available images of
the andysed ste. Consequently, not al the remote-sendang images acquired on the
investigated area at different times can be used for updating the related land-cover maps. In
this context, it would be important to develop classfication methods capable of andysing the
images of the consdered dte for which no training data are available, thus increasing the
effectiveness of monitoring systems based on the use of remote-sensing images.

Recently, the authors faced this problem by proposng an unsupervised retraining
technique for maximum:-likelihood (ML) classifiers capable of producing accurate land-cover
maps even for images for which ground-truth information is not available [6]. This technique
alows the unsupervised updating of the parameters of an dready trained classfier on the
basis of the digribution of the new image to be classfied. However, given the complexity

inherent with the task of unsupervised retraining, the resulting classfier may be intringcaly



less reliable and less accurate than the corresponding supervised one, especidly for complex
data sets.

In this paper, in order to define arobust classfication system for an unsupervised updating
of land-cover maps, we propose: i) to extend the unsupervised retraining technique proposed
in [6] to radid basis function (RBF) neurd network classfiers; ii) to integrate the resulting
unsupervised retraining dassfiers in the framework of multiple-classfier systems. In greater
detall, the proposed system is based on two different unsupervised retraining classification
dgorithms: a parametric maximum-likelihood (ML) classfier and a nonparametric radid basis
function (RBF) neurd-network classfier. Both techniques alow the existing “knowledge’ of
the classfiers (i.e, the parameters of the classifiers obtained by supervised learning on afirgt
image, for which atraining set is assumed available) to be updated in an unsupervised way,
on the basis of the digtribution of the new image to be categorised. The combination of the
above-mentioned dlassification dgorithms is used as a tool for increasing the accuracy and
the rdiability of the dassfication maps obtaned by each single classfier. Classicd
approaches to classfier combination are adopted. As compared to previous works [6], the
main novety of this pgper condgts in the origina retraining technique proposed for the RBF
classfier and in the multiple dassfier architecture used in the context of partialy unsupervised

dassficaion.



The paper is organized into seven sections. In Section 2 the conddered problem is
formulated. The architecture of the proposed system is described in Section 3. The
unsupervised retraining classfiers are described in Section 4. Section 5 presents the
drategies adopted for the combination of the ensemble of unsupervised retraining classfiers
consdered. Experimenta results are given in Section 6. Findly, in Section 7, discusson is

provided and conclusions are drawn.

2 Formulation of the Problem
Let X, :{xll,xlz,..,xg} and X, :{xf,xzz,..,xé} denote two multispectral images composed
of B pixels and acquired in the area under andyss at thetimet; and t,, respectively. Let xij

bethe 1° d feature vector associated with the j-th pixd of the image X; (where d isthe
dimensondity of the input space). Let X; be a multivariate random variable that represents
the pixd vaues (i.e, the feature vector vaues) in X;. Let us assume that the same set

W={W;,W5,...\W} of C land-cover classes characterizes the considered geographical

area at both t; and t,. This means that in our sysem only the spatia and spectrd
digributions of such land-covers classes are supposed to vary (i.e, the set of land-cover
classes that characterize the consdered ste is fixed over time). This assumption is quite

redidic in severd red applications of classfication of remote-sensing data [7]-[9]. Findly,



let us assume that a reliable training set Y, is available & t;, whereas a training set is not
available a t,. This prevents the generation of the t, land-cover map, as the training of the
classfier on the image X, cannot be performed. At the same time, it is not possible to apply
the classfier trained on the image X; to the image X, because, in generd, the estimates of
the satistica parameters of the classes a t; do not provide accurate approximations for the
same terms a t,. This depends on severd factors (e.g., differences in the atmospheric and
light conditions at the image-acquisition dates, sensor nortlinearities, different levels of sail
moisture, etc.) that dter the spectra signatures of land-cover classesin different images and
consequently the digtributions of such classes in the feature space.

It is worth noting that the proposed approach is based on a separate andysis of the two
images X; and X,. Consequently, it does not require that the images are accurately co-

registrated.

3 Description of the Architectur e of the Proposed Classification System

The proposed classification system is based on a multiple-classfier architecture. The choice
of this architecture mainly depends on the intringc complexity of the unsupervised retraining
procedures, which may result in less reiable and less accurate classfiers than the

corresponding supervised ones, especially for complex data sets. In this context, the use of a



multiple-classfier gpproach alows one to integrate the complementary information provided
by an ensemble of different dassfiers, thus involving a more robust and rdliable classfication
system.

The cdassfiers composing the ensemble are developed within the framework of the Bayes

decision theory. Consequently, the decison rule adopted to classfy a generic pixd x} of the
image X can be expressed as [10]:

xTwy, if w =argmaqPw /%), (h)

wil W

where F’l(vvi /xf) is the estimate of the posterior probability of the class w; at t;, giventhe

pixel le. According to (1), the classfication of the image X; requires the estimation of the
posterior probabiliies P(w / X,) for dl dasses w;1 W. These estimates involve the
computetion of a parameter vector J,, which represents the “knowledge’ of the classfier

concerning the digtributions of the classes in the fegture space (i.e., the status of the classfier
at t1). The number and nature of the vector components will be different depending on the
specific classfier used. In our system, we propose to consider two different unsupervised

retraining approaches. the former is a parametric gpproach, which is based on the ML



classfier; the later condsts of a non-parametric technique, which is based on RBF neurd

networks. Both techniques allow the parameter vectors J,” (corresponding to the parametric
approach) and J;" (corresponding to the nonparametric approach), which are obtained by
supervised learning on the firgt image X, to be updated in an unsupervised way.

In the proposed mulltiple-classfier approach, N different classfiers are trained a the time t;
by using the information contained in the available training st Y. In particular, a classica

parametric ML classfier [10] and N-1 different architectures of nonparametric RBF neura

networks [5] are used. As aresult, a parameter vector J,” corresponding to the parametric
approach, and the N-1 parameter vectors J;'* (r=1,...,N-1) corresponding to the
nonparametric RBF neurd approach, are derived. Then, at time t,, the classfiers are
retrained in an unsupervised way by using the information contained in the digtribution p(X2)
of the new image X,. At the end of the retraining phase, a new parameter vector J.} is
obtained for the ML classfier and N-1 new parameter vectors J," (r=1,...,N-1) are
obtained for the N-1 RBF neurd-network architectures consdered. Findly, the results
provided by different unsupervised retraining classifiers are combined by usng a classca

multiple- classfier pproach.

4 TheProposed Unsupervised Retraining Classifiers



The main idea of the proposed unsupervised retraining gpproach is that rough estimates of
the parameter values that characterize the classes consdered at the time t, can be obtained
by explaiting the parameters of the classfiers estimated at the time t; by supervised learning.
Such estimates are then updated in an unsupervised way by using the information contained
in the digribution p(X,) of the new image X.. In the following, a detailed description of the
proposed unsupervised retraining technique for the RBF neurd-network classfiersis given.
Concerning the retraining technique for the ML classfier, we provide only a brief description

snce it was dready proposed in [6].

4.1 The Proposed Retraining Technique for the ML Classifier
In the case of a parametric ML classifier, the vector of parameters that should be estimated

for dassifying the new image X, isgiven by:

37 =la, )., P ). Py ()] @
where g, is the vector of the parameters that characterize the conditiona density function
p,(X, /W) of the dassw (e.g., the mean vector m, and the covariance matrix S, ; inthe
Gaussan case). For each dass w1 W, the initid values of both the prior probability
P°(w) and the conditiond density function p?(X,/w ) can be approximated by the

vaues computed in the supervised training phase a t;. Then, such estimates can be improved



by exploiting the information associated with the distribution p, (X, ) of the new image X..

In particular, the proposed method is based on the observation that the statistica distribution

of the pixd vauesin X, can be described by the following mixed-dengty distribution:
C
P.(X2) =& R(w)p, (X, /) , )

where the mixing parameters and the component dengties are the a priori probabilities and
the conditiond dendty functions of the classes, respectively. In this context, the retraining of
the ML classfier a the time t, becomes a mixture dengity estimation problem, which can be
solved by exploiting the iterative expectation-maximization (EM) agorithm [11]-[14]. The

iterative equations to be used are the following:

P“l(w)_E a Plw/x) 4
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where the superscripts t and t+ 1 refer to the values of the parameters at the current and next
iterations, respectively, the superscript T refers to the vector trangpose operation, and the

estimated posterior probability PZ‘(W< / xf) isequd to:

oy /o) PGP ) -
/) & ps(0¢ o )5 )

=1

where the density function p, (x]2 /w) is computed by using the estimates of the terms M,
and S,, obtained at current iteration.
For each class w; I W, the estimates obtained at convergence of the EM agorithm are the

new parameters of the ML dassfier a the time t,. Since the unsupervised retraining
gpproach for the ML classfier is not the novel aspect of this paper, we refer the reader to

[6] for greater details on this method.
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4.2 The Proposed Unsupervised Retraining Technique for RBF Neural-Networ k
Classfiers

The proposed nonparametric classfier is based on Gaussan RBF neura networks, which
congs of three layers: an input layer, a hidden layer, and an output layer (see Fig. 1). The
input layer relies on as many neurons as the input features. The input neurons just propagete
the input festures to the next layer. Each one of the Q neurons in the hidden layer is
associated with a Gaussian kernel function. The output layer is made up of as many neurons
as the classes to be recognized. Each output neuron computes a Ssmple weighted summetion
over the responses of the hidden units for a given input pattern (we refer the reader to [5] for
more details on RBF neura-network classifiers).

In the context of RBF neurd classfiers, the conditional dengties of equation (3) can be

written as a sum of contributes due to the Q kernel functions j , of the neurd architecture

[24]:

AMACHINE &)

1

Qoo

p,(X,)=
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where the mixing parameters and the component dengties are the a priori probabilities and

the conditional density functions of the kernels. Equation (8) can be rewritten as.



0,(X,) =& & Plw/i )Rl (%70 ). ©

i=1q=1
where the mixing parameter P,(w /] ,) is the conditional probability thet the kemel j

belongs to class w. In this formulation, kerndls are not determinitically owned by classes,
50 the formulation can be consdered as a generdization of a standard mixture modd [14].
The vaue of the weight V\fq that connects the g-th hidden unit to the i-th output node, can be
computed as [14]:

W, =PW 1] )P ) - (10)
By andysing equation (9), it can be noticed that, as for the ML classfier, the retraining of the

RBF dasdfier a time t, becomes a parameter estimation problem. In particular, the

parameter vector to be estimated is given by:

3= [, PG )P W /i e PoWe 1] 1) of oo oPl o R0/ g )ensP 7 )|
(11)

where f, isthe vector of parameters that characterises the density function p, (X2 /] q)
(e.g., if Gaussan kernel functions are considered, f ,, is composed of the mean p, , and the
width s, , charecterizing the g-th kernel). However, the parameter vector J7 is more

complex to be estimated than the parameter vector J.} related to the ML classfier. In

13



particular, the presence of the mixing terms PZ(V\( /j q) do not alow the new estimatesto be

accomplished in a fully unsupervised way. Hence, additiond information should be available
in order to compute such datistica terms. In the following, we will assume to know the

vaues of the mixing parameters P(V\( /] q); we refer the reader to the Appendix for the
decription of a technique that exploits the architecture of the proposed system (and, in
particular, some of the results provided by the ML classfier) for estimating such parameters.
For smplicity, let us assume that dl the Q kernel functions f, , are characterized by the same
width s, . Under the above-mentioned assumptions, it is possible to prove that the following
equations (derived by exploiting the EM agorithm) can be applied iteratively to update the

RBF neura-network classifier parameters.

P )= & R L/x) (12)

XjZTXZ
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where the superscripts t and t+ 1 refer to the vaues of the parameters at the current and next

iterations, respectively, and the estimated posterior probability PZ‘G a / xf) is given by:

il )= 0L )20 (15

i/m 79 ] _

&b/ el )
where the dengty function pz( /J ) is computed by using the estimates of the terms p,;
and s obtained at current iteration.

All the componentsof J; areinitialized according to the values obtained in a supervised way

on the t; image. It is possible to prove that a each iteration, the log-likelihood function of the
edimates increases until amaximum is reeched. Although the EM adgorithm may converge to
a locd maximum, its convergence is guaranteed [11]-[14]. The vaues of the parameters
obtained at convergence for each RBF neurd classfier are used to andyse the new image to

be classfied.

5 Multiple Classifier Strategies
We propose the use of different combination drategies to integrate the complementary

information provided by the ensemble of unsupervised retraining parametric and non



parametric classfiers described in the previous section. The use of these drategies for
comhbining the decisions provided by each single classfier resultsin a more robust behavior in
terms of accuracy and reiability of thefina classfication system.

As dated in Section 3, let us assume that a set of N classfiers (an unsupervised retraining
ML dasdfier and N-1 unsupervised retraining RBF neurd dasdfiers with different
architectures) are retrained on the X, image in order to update the corresponding parameters
by using the procedures described in Section 4. In this context, several drategies for
combining the decisons of the different classfiers can be adopted [15], [16]. We will focus
on three widely used combination drategies: the Majority Voting [15], the Combination by
Bayesian Average [16], and the Maximum Posterior Probability strategies. It is worth
noting that, in our case, the use of these unsupervised combination drategies is mandatory
because a training set is not avalable a t,, and therefore more complex supervised
approaches cannot be adopted.

The Majority Voting principle faces the combination problem by consdering the results
of each single classfier in terms of the class labels assigned to the patterns. Hence, a given
input pattern receives N dassfication labes from the multiple-classfier system, each label
corresponding to one of the C classes considered. The combination method is based on the

interpretation of the classification label resulting from each classifier asa*“vote” for one of the

16



C land-cover classes. The data class thet receives the largest number of votesis taken asthe
class of theinput pattern.

The second method considered, the Combination by Bayesian Average strategy, is based

on the observation that for a given pixd x,2 in the image X, the N classfiers consdered

provide an approximation of the posterior probability PZ(Wi /xf) for each class w; T w.
Therefore, a possible strategy for combining these classfiers conssts in the computation of

the average pogterior probabilities, i.e,

1
N

Qoz

Pzave (\NI | X? ) = |52n (V\/I / XJ-2 ) (16)

J

Iy

where IE’Z”(W / xf) IS the approximation of the posterior probability P, (vv,/ xf) provided by
the n-th classfier. The classfication is then carried out according to the Bayes rule by
seecting the land-cover class associated with the maximum average posterior probability.
The third method consdered (i.e, the Maximum Posterior Probability drategy) is
basad on the same observation of the previous one. However, in this case, the strategy for
combining dassfiers consggts in a winner-takes-al gpproach: the land-cover class that has

the larger posterior probability among dl classfiersis taken as the class of the input pattern.
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6 Experimental Results

In order to assess the effectiveness of the proposed approach, different experiments were
caried out on a data set made up of two multispectra images acquired by the Thematic
Mapper (TM) multispectral sensor of the Landsat 5 satellite. The sdected test site was a
section (412" 382 pixels) of a sceneincluding Lake Mulargias on the Idand of Sardinia, Italy.
The two images used in the experiments were acquired in September 1995 ;) and July
1996 (t,). Figure 2 shows channdls 2 of both images.

The available ground truth was used to derive atraining set and atest set for each image.
Five land-cover classes (i.e., urban area, forest, pasture, water body, and vineyard), which
characterize the test dte at the above-mentioned dates, were consdered. A detailed
description of the training and test sets of both images is given in Table 1. To carry out the
experiments, we assumed that only the training set associated with the image acquired in
September 1995 was available. It is worth noting that the images considered were acquired
in different periods of the year. Therefore, in this case, the unsupervised retraining problem
turned out to be rather complex.

An ML and two RBF classfiers (one with 60 hidden neurons, i.e., RBF-1, the other with

80 hidden neurons, i.e., RBF-2) were trained in a supervised way on the September 1995

18



image to estimate the parameters that characterize the dendty functions of the classes at the

time t1. For the ML classfier, the assumption of Gaussian distributions was mede for the

densty functions of the classes (this was a reasonable assumption, as we consdered TM
images). In order to exploit the non-parametric characterigic of the two RBF neurd
classfiers, they were trained using not only the 6 avalable spectrd channels, but aso 5
texture features based on the gray-level co-occurrence matrix (i.e, sum variance, SUm
average, corrdation, entropy and difference variance) [17]. These features were computed
by usng a window sze equd to 7x7 and an interpixel distance equa to 1. After the
upervised training on the X, image, the effectiveness of the classfiers was evaluated on the
test sets related to both images (see Table 2). On the one hand, as expected, the classifiers
provided high overdl classfication accuracies for the test set related to the September 1995
image (i.e, 90.97%, 81.79% and 81.74% for the ML, the RBF-1, and the RBF-2
classfiers, respectively). On the other hand, they exhibited very poor performances on the
July 1996 test set. In particular, the overdl classfication accuracy provided by the ML
classfier for the July test st was equa to 50.43%, which is not an acceptable result. Also
the accuracies exhibited by the two RBF neurd classifiers congdered are not sufficiently high

(i.e., 69.78% and 71.27%).
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At this point, the consdered classfiers were retrained on the to image (July 1996) by

usng the proposed unsupervised retraining techniques. The ML and RBF retraining
processes converged in 11 and 15 iterations, respectively, taking few minutes of processing
on a Sun Ultra80 workstation. The overal and class-by-class accuracies exhibited by the
different classfiers after the retraining phase are given in Table 3. By a comparisons of Table
2 and Table 3, one can see that the classfication accuracies provided by the considered
unsupervised retraining classfiers for the July 1996 tet =t are sharply higher than the ones
exhibited by the single classfiers trained on the September 1995 image (i.e,, 92.76% vs
50.43%, 95.34% vs 71.27%, 95.44% vs 69.78% for the ML, the RBF-1, the RBF-2
classfiers, respectively). In greater detall, the retrained classfiers exhibited high accuracies
on al land-cover classes, with exception of the vineyard class, which isaminority one,

At this point, the three classfiers were combined according to the strategies described in
Section 5. In order to evauate the accuracy of the resulting classfication system, it was
gpplied to the July 1996 test set. The overdl and class-by-class accuracies yielded are given
in Table 4. As one can see, the overal accuracies provided by &l the considered
combination drategies (i.e.,, 95.58%, 95.39%, and 95.75% for the Mgority Voting, the

Bayesan Average, and the Maximum Posterior Probability strategies, respectively) are



gmilar to the one yieded by the best-performing classfier composing the ensemble (i.e,
95.44% obtained by the RBF-2 classfier).

It is worth gressing that the objective of the multiple-dassfier architecture is not only to
increase the accuracy of the classfication system but aso to increase its robustness. In
particular, e combination strategy should alow one to recover the possible falure of a
single unsupervised retraining classfier of the ensemble by explaiting the results provided by
the other considered classfiers. In order to assess this last issue, an experiment was carried
out in which the falure of the retraining process of one of the RBF dassfiers (i.e, RBF-1)
was smulated. To this end, the RBF classfier with 60 hidden neurons, after being trained on
the X, image, was not retrained on the X, image (et usindicate this classfier as RBF-3). In
this condition, the classfication accuracy exhibited by the RBF-3 classifier on the July 1996
test sat results equa to the one yielded by the RBF-1 classifier on the same test set before
the unsupervised retraining phase (see Table 2). As dready observed, this overal accuracy
(i.e, 71.27%) is not acceptable. At this point, the ML classifier and the RBF-2 and RBF-3
neura classfiers were combined according to the strategies described in Section 5. The
accuracies exhibited by the resuting multiple-classifier system are reported in Table 5. As
one can see, even though RBF-3 provided low accuracy on the July 1996 test s, dl the

combination drategies resulted in high classfication accuracies, o recovering the smulated
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falure of the unsupervised retraining process. In greeter detail, the obtained accuracies are
comparable to the ones achieved by combining the three “well-retrained” classifiers (i.e,

ML, RBF-1, and RBF-2).

7 Discussion and Conclusions

In this paper, the problem of unsupervised retraining of classfiers for the updating of land-
cover maps has been addressed in the framework of a multiple-classfier sygem. The
proposed system produces accurate land-cover maps of a specific study area dso from
images for which a ™iable ground truth (and hence a suitable training s&t) is not available.
This is made possible by an unsupervised updating of the parameters of an ensemble of
parametric and non-parametric classfiers on the basis of the new image to be classfied. In
particular, an ML parametric classfier and RBF neurd network nonparametric classfiers
have been consdered. However, given the complexity inherent with the task of unsupervised
retraning, the resulting classfiers are intrindcaly less rdiable and less accurate than the
corresponding supervised approaches, especidly for complex data sets. Therefore, the use
of methodologies for the combination of classifiers has been proposed in order to increase

the reliability and the accuracy of single unsupervised retraining dassifiers.



Although extensive experiments on other data sets are necessary for a fina vdidation of
the method, the results we obtained on the consdered data set are very interesting. In
particular, they pointed out that the proposed system is a promising tool for ataning high
classfication accuracies dso for images of a given area for which an updated training set is
not available.

The presented method is based on the assumption that the estimates of the classfier
parameters derived from a supervised training on a previous image of the conddered area
can represent rough estimates of the class digtributions in the new image to be categorised.
Then the EM dgorithm is gpplied in order to iteratively improve such estimates on the bass
of the globa dendty function of the new image.

It is worth noting that the initid estimates usualy cannot be directly used to classfy the
new image to be anadyzed. In fact in practica Stuation, depending on differences in the
amospheric or light conditions existing between the two acquigtion detes, such initid
esimates may be sgnificantly different from the true ones. The proposed method copes with
this dtudtion, i.e, the EM dgorithm is able to improve the initid edtimates so that the
classfication of the new image can be accurately performed. However, in order to minimize
the possibility that the retraining does not converge to accurate estimates, if possble, we

recommend the gpplication of a pre-processng phase amed a reducing the differences
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between images due to the above-mentioned factors (Smple correction dgorithms can be
adopted).

At the present, the authors are addressing the problem of defining criteria suitable to identify
the cases in which the initid estimates of the class distributions are so different from the true

ones that may involve afalure of the retraining process.

Appendix |. Estimation of the Mixing Parameters Pz(W /] q) for the Retraining of

RBF Neural-Network Classifiers
In this appendix, we propose amethod for estimating the values of the mixing parameters

P,(w /j ,) of the RBF neurd dlassfiers (see section 4.2). These parameters can be

edimated by exploiting the multiple-classfier architecture of the proposed sysem. In
paticular, they can be derived by usng the updated parameter vector of the ML classfier.

The drategy adopted is the following. Let L, be the set of pixels sz that are most likdy
correctly classfied by the ML classfier. This sat can be identified by anaysing the estimates
of the posterior probability P, {w / x?) provided by the ML dassification agorithm. Let us
consider thej-th pixel x of theimage X and let usassumethat x;  isclassified by the ML

classfier as belonging to the class w, (i.e, w, = argAmax{Pz(wi /sz)} )- The pixd sz is
wl W
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likely to be correctly classfied by the ML classfier (and thus is assigned to the set L, and
labelled as beonging to the class wy) if its esimated posterior probability is above a given
threshold (i.e, Pz(vvk / ij)3 a, where 0.5<a<1 isared number usudly close to 1). The
set L, is then used to estimate the mixing parameters Pz(vvi /] q) according to the following
iterative equation:

a B ./x)

x4 L,

a P o/%) (17)

x]IL2

P2t+1(\/\( /j q) —

where L', isthe subset of L, containing the pixels ij labelled as belonging to the dlass w.

At each step of the EM agorithm used for the unsupervised estimation of the other RBF
neura-network parameters [see equations (12), (13), and (14)], adso the equation (17) is

iterated in order to increase the accuracy in the estimation of the mixing parameters.

Appendix II. Derivation of the Equations for Estimating the Parameters of RBF
Neural-Network Classifiers
Equation (12)-(14) and (17) can be derived by maximizing the following loglikeihood

function:

Y(xz/‘]zn): a |qu§=l[p2(X1-2/j q)Pz(i q)]"'

2
xjlLy



+éc: é. |Oggq§ pz(ij /j q)Pz(l q)Pz(\Nn/j q)$ (18)
- b

which is equivaent to minimizing the error function E(XZ/J;‘ ):

E(X,/37)=-Y(x,/37) (19)
This task can be achieved by means of the technique described in [18]. In particular, let us
consder the change DEin the function (19) when replacing the parameter values of the
current iteration with the one of the next iteration:

CE = EHl(Xz/.Jzn)' E' (Xz/‘Jzn):

et g el
o q‘@ Xi g

G alpberi e

§§p“1(x T q)Pz‘”(W./J ),_ELXZ;E}*
o=1g /XJ uI

almberi b, Jrwi ) b

+

(20)

where E(X,/37) and E*}(X, /35 arethe error functions computed with the parameters
esimated a the current and next iterations, respectively. The terms PZ‘(] q! xf) are

introduced in order to gpply the Jensen’s inequadity. Thanks to such inequdlity, the following

upper-bound can be obtained:
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e & SR, ixlog PR

TAMAPANES
r=1
-§ & AR peiog, PPl P ) (21)
apiberi el Rt G L)

We am a minimizing this bound with respect to the values of the parameters computed at
the next iteration. Dropping the terms which depends only on the “old” parameters, the

right-hand side of (21) can be rewritten as.

Q=- & &R,/ )oglps(¢ /i o Jpr(i o)+

X1 L, L

-4 & anf,/e)olmber Jroh et @

i=1: L, 9=1

é
Q = . ) >
Q= X;leglP;(lq/xf)gogP;lG q) dlogs;™ 2(s;+1)2 H+
° o
24 ap 2 : t+1 t41 t+1 |X1'2_p;c1128
?‘lxlz?uzf:‘f’z(lq/xj)xgong (4)+log Pi*(w /i ,)- dlogs} o g_(23)
e

At this point it is possble to minimize Q (and hence the error function E“l(x 2/JZn )) with

respect to the “new” parameters. Concerning the parameters s, and p, , theminimization
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is straightforward and leads to equations (13)-(14). Concerning the parameters P, (J q) and

P, (i ,) thefollowing constraints should be considered:

aR,)=1 (24)
&R Wi =1 (25)

This can be easily done by introducing two Lagrange multipliers. Accordingly equations (12)

and (17) can be obtained.

Acknowledgements

This research was supported by the Italian Space Agency (AS)).

References

1. JA. Richards, Remote senang digitad image andyss, 2nd ed., Springer-Verlag, New
York, 1993.

2. JA. Benediktsson, P.H. Swain, O.K. Ersoy, Neurad networks approaches versus
datisticd methods in dassfication of multisource remote sensing data, IEEE Transactions

on Geoscience and Remote Sensing, 28, (1990), 540-552.

28



. JA. Benediktsson, P.H. Swain, Consensus theoretic classfication methods, |EEE

Transactions on Systems, Man and Cybernetics, 22, (1992), 688-704.

L. Bruzzone, D. Fernandez Prieto, SB. Serpico, A neura datigtica approach to
multitempora and multisource remote- sensing image classfication, |EEE Transactions on
Geoscienec and remote Senaing, 37, (1999), 1350-13509.

L. Bruzzone, D. Fernandez Prieto, A technique for the sdection of kerne-function
parameters in RBF neura networks for classfication of remote-sensing images, |IEEE
Transactions on Geoscience and Remote- Sensing, 37, (1999), 1179-1184.

L. Bruzzone, D. Fernandez Prieto, Unsupervised retraining of a maximum-likelihood
classfier for the anadlysis of multitempora remote-sensing images, |EEE Transactions on
Geoscience and Remote Sensing, 39, (2001), 456-460.

F. Masdli, M.A. Gilabert, C. Conese, Integration of high and low resolution NDVI data
for monitoring vegedion in mediteranean environments, Remote Sensng of
Environment, 63, (1998), 208-218.

. A. Grignetti, R. Salvatori, R. Casacchia, F. Manes, Mediterranean vegetation analysis by
multi-temporal satellite sensor data, Internationa Journa of Remote Sensing, 18, (1997),

1307-1318.

29



9. M.A. Friedl, C.E. Brodley, A.H. Strahler, Maximizing land cover accuracies produced
by decison trees a continenta to globa scales, IEEE Transactions on Geoscience and
Remote-Sensing, 37, (1999), 969-977.

10. JT. Tou, R.C. Gonzalez, Pettern recognition principles, Addison, Reading, MA, 1974.

11. A.P. Dempgter, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via
the EM dgorithm, Journd of Roya Statistic. Soc., 39, (1977), 1-38.

12. B.M. Shahshahani, D. Landgrebe, The effect of unlabeled samples in reducing the small
sample Sze problem and mitigating the Hughes phenomenon, IEEE Transactions on
Geoscience and Remote-Sensing, 32, (1994), 1087-1095.

13. T.K. Moon, The ExpectationMaximization dgorithm, Signd Processng Magazine, 13,
(1996), 47-60.

14. D.J. Miller, S.U. Hasan, Combined Learning and Use for a Mixture Modd Equivaent to
the RBF Classfier, Neurd Computation, 10, (1998), 281-293.

15. L. Lam, C.Y. Suen, Application of mgority voting to pattern recognition: An anays's of
its behavior and performance, IEEE Transactions on System, man and Cybernetics, 27,
(1997), 553-568.

16. J. Kittler, M. Hatef, R.P.W. Duin, J. Mates, On combining classfiers, IEEE Transactions

on pattern Anadysis and machine Intelligence, 20, (1998), 126-239.



17. RM. Hardick, K. Shanmugan, |. Dingein |. Textura features for image classfication.
|EEE Transactions on System, man and Cybernetics, 3, (1973), 610-621.

18. C. Bishop, Neura Networks for Pattern Recognition, Clarendon Press: Oxford, 1995.

31



FIGURE CAPTIONS

Fig. 1. Standard architecture of a supervised RBF neurd-network classfier.

Fig. 2. Channel 5 of the Landsat-5 TM images utilized for the experiments () image

acquired in September 1995; (b) image acquired in July 1996.
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TABLE CAPTIONS

Table 1. Number of patterns in the training and test sets of both the September 1995 and
July 1996 images.

Table 2. Overdl classfication accuracies exhibited by the consdered classfiers (trained in a
supervised way on the September 1995 image) before the unsupervised retraining.

Table 3. Classfication accuracies exhibited by the consdered classifiers on the July 1996
test set after the unsupervised retraining.

Table 4. Classfication accuracies exhibited by the proposed multiple-dassfier sysem on the
July 1996 test set.

Table 5. Classfication accuracies exhibited by the proposed multiple-classfier sysem on the
July 1996 test set when the failure of the unsupervised retraining of RBF-3 was smulated.






Fig. 2



Table

1

Land-cover class

Number of patterns

Training set Test set
Pasture 554 589
Forest 304 274
Urban area 408 418
Water body 804 551
Vineyard 179 117
Overall 2249 1949

Table2

Classification

Overall classification accuracy (%)

technique
Test set (September 1995) Test set (July
1996)

ML 90.97 50.43
RBF-1 81.79 71.27
RBF-2 81.74 69.78

Table3

Land-cover class

Classification accuracy (%)
(July 1996 test set)

ML RBF-1 RBF-2
Pasture 94.06 99.83 100.00
Forest 87.22 98.54 98.90
Urban area 93.06 98.56 98.56
Water body 100.00 100.00 100.00
Vineyard 64.10 31.62 31.62
Overall 92.76 95.34 95.44




Table4

Land-cover class

Classification accuracy (%)

(July 1996 test set)

Majority Voting

Bayesian Average

Maximum Posterior

Probability
Pasture 100.00 99.83 99.32
Forest 98.90 98.90 98.54
Urban area 98.56 98.56 98.08
Water body 100.00 100.00 100.00
Vineyard 34.18 31.62 42.73
Overall 95.58 95.39 95.75
Table5

Land-cover class

Classification accuracy (%)

(July 1996 test set)

Majority Voting

Bayesian Average

Maximum Posterior

Probability
Pasture 98.47 96.43 90.83
Forest 98.90 98.90 99.27
Urban area 98.56 97.84 98.08
Water body 100 100 100
Vineyard 58.11 52.13 58.11
Overall 96.56 95.43 94.20
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