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Abstract. In this paper, we propose a classification system based on a multiple-classifier 

architecture, which is aimed at updating land-cover maps by using multisensor and/or 

multisource remote-sensing images. The proposed system is composed of an ensemble of 

classifiers that, once trained in a supervised way on a specific image of a given area, can be 

retrained in an unsupervised way to classify a new image of the considered site. In this 

context, two techniques are presented for the unsupervised updating of the parameters of a 

maximum-likelihood (ML) classifier and a radial basis function (RBF) neural-network 

classifier, on the basis of the distribution of the new image to be classified. Experimental 

results carried out on a multitemporal and multisource remote-sensing data set confirm the 

effectiveness of the proposed system. 

 

Keywords: multiple-classifier systems, unsupervised retraining algorithms, maximum-

likelihood classifier, radial basis function neural networks, expectation-maximization 

algorithm.  

 

1  Introduction 

The increasing availability of remote-sensing images, acquired periodically by satellite sensors 

on the same geographical area, makes it extremely interesting to develop monitoring systems 
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capable of automatically producing and regularly updating land-cover maps of the considered 

site. The monitoring task can be accomplished by supervised classification techniques, which 

have proven to be effective categorisation tools [1]-[5]. Unfortunately, these techniques 

require the availability of a suitable training set (and hence of ground-truth information) for 

each new image of the considered area to be classified. However, in real applications, it is 

not possible to rely on suitable ground truth information for each of the available images of 

the analysed site. Consequently, not all the remote-sensing images acquired on the 

investigated area at different times can be used for updating the related land-cover maps. In 

this context, it would be important to develop classification methods capable of analysing the 

images of the considered site for which no training data are available, thus increasing the 

effectiveness of monitoring systems based on the use of remote-sensing images.  

Recently, the authors faced this problem by proposing an unsupervised retraining 

technique for maximum-likelihood (ML) classifiers capable of producing accurate land-cover 

maps even for images for which ground-truth information is not available [6]. This technique 

allows the unsupervised updating of the parameters of an already trained classifier on the 

basis of the distribution of the new image to be classified. However, given the complexity 

inherent with the task of unsupervised retraining, the resulting classifier may be intrinsically 
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less reliable and less accurate than the corresponding supervised one, especially for complex 

data sets.  

In this paper, in order to define a robust classification system for an unsupervised updating 

of land-cover maps, we propose: i) to extend the unsupervised retraining technique proposed 

in [6] to radial basis function (RBF) neural network classifiers; ii) to integrate the resulting 

unsupervised retraining classifiers in the framework of multiple-classifier systems. In greater 

detail, the proposed system is based on two different unsupervised retraining classification 

algorithms: a parametric maximum-likelihood (ML) classifier and a nonparametric radial basis 

function (RBF) neural-network classifier. Both techniques allow the existing “knowledge” of 

the classifiers (i.e., the parameters of the classifiers obtained by supervised learning on a first 

image, for which a training set is assumed available) to be updated in an unsupervised way, 

on the basis of the distribution of the new image to be categorised. The combination of the 

above-mentioned classification algorithms is used as a tool for increasing the accuracy and 

the reliability of the classification maps obtained by each single classifier. Classical 

approaches to classifier combination are adopted. As compared to previous works [6], the 

main novelty of this paper consists in the original retraining technique proposed for the RBF 

classifier and in the multiple classifier architecture used in the context of partially unsupervised 

classification. 
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The paper is organized into seven sections. In Section 2 the considered problem is 

formulated. The architecture of the proposed system is described in Section 3. The 

unsupervised retraining classifiers are described in Section 4. Section 5 presents the 

strategies adopted for the combination of the ensemble of unsupervised retraining classifiers 

considered. Experimental results are given in Section 6. Finally, in Section 7, discussion is 

provided and conclusions are drawn. 

 

2 Formulation of the Problem 

Let { }11
2

1
11 B,..,x,xx=X  and { }22

2
2
12 B,..,x,xx=X   denote two multispectral images composed 

of B pixels and acquired in the area under analysis at the time t1 and t2, respectively. Let i
jx  

be the d×1  feature vector associated with the j-th pixel of the image Xi (where d is the 

dimensionality of the input space). Let Xi be a multivariate random variable that represents 

the pixel values (i.e., the feature vector values) in Xi. Let us assume that the same set 

{ }Cωωω ,...,, 21=Ω  of C land-cover classes characterizes the considered geographical 

area at both t1 and t2. This means that in our system only the spatial and spectral 

distributions of such land-covers classes are supposed to vary (i.e., the set of land-cover 

classes that characterize the considered site is fixed over time). This assumption is quite 

realistic in several real applications of classification of remote-sensing data [7]-[9]. Finally, 
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let us assume that a reliable training set Y1 is available at t1, whereas a training set is not 

available at t2. This prevents the generation of the t2 land-cover map, as the training of the 

classifier on the image X2 cannot be performed. At the same time, it is not possible to apply 

the classifier trained on the image X1 to the image X2 because, in general, the estimates of 

the statistical parameters of the classes at t1 do not provide accurate approximations for the 

same terms at t2. This depends on several factors (e.g., differences in the atmospheric and 

light conditions at the image-acquisition dates, sensor non-linearities, different levels of soil 

moisture, etc.) that alter the spectral signatures of land-cover classes in different images and 

consequently the distributions of such classes in the feature space.  

It is worth noting that the proposed approach is based on a separate analysis of the two 

images X1 and X2. Consequently, it does not require that the images are accurately co-

registrated.   

 

3 Description of the Architecture of the Proposed Classification System 

The proposed classification system is based on a multiple-classifier architecture. The choice 

of this architecture mainly depends on the intrinsic complexity of the unsupervised retraining 

procedures, which may result in less reliable and less accurate classifiers than the 

corresponding supervised ones, especially for complex data sets. In this context, the use of a 
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multiple-classifier approach allows one to integrate the complementary information provided 

by an ensemble of different classifiers, thus involving a more robust and reliable classification 

system.  

The classifiers composing the ensemble are developed within the framework of the Bayes 

decision theory. Consequently, the decision rule adopted to classify a generic pixel 1
jx  of the 

image X1 can be expressed as [10]: 

 

  ( ){ }  1
1

1     if    jikkj x/Pmaxargx
i

ωωω
Ωω ∈

=∈  , (1) 

 

where ( )1
1 / ji xP ω  is the estimate of the posterior probability of the class iω  at t1, given the 

pixel 1
jx . According to (1), the classification of the image X1 requires the estimation of the 

posterior probabilities ( )11 / XP iω  for all classes Ωω ∈i . These estimates involve the 

computation of a parameter vector 1ϑ , which represents the “knowledge” of the classifier 

concerning the distributions of the classes in the feature space (i.e., the status of the classifier 

at t1). The number and nature of the vector components will be different depending on the 

specific classifier used. In our system, we propose to consider two different unsupervised 

retraining approaches: the former is a parametric approach, which is based on the ML 
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classifier; the latter consists of a non-parametric technique, which is based on RBF neural 

networks. Both techniques allow the parameter vectors p
1ϑ  (corresponding to the parametric 

approach) and n
1ϑ  (corresponding to the nonparametric approach), which are obtained by 

supervised learning on the first image X1, to be updated in an unsupervised way. 

In the proposed multiple-classifier approach, N different classifiers are trained at the time t1 

by using the information contained in the available training set Y1. In particular, a classical 

parametric ML classifier [10] and N-1 different architectures of non-parametric RBF neural 

networks [5] are used. As a result, a parameter vector p
1ϑ  corresponding to the parametric 

approach, and the N-1 parameter vectors r,n
1ϑ  (r=1,…,N-1) corresponding to the 

nonparametric RBF neural approach, are derived. Then, at time t2, the classifiers are 

retrained in an unsupervised way by using the information contained in the distribution p(X2) 

of the new image X2. At the end of the retraining phase, a new parameter vector p
2ϑ  is 

obtained for the ML classifier and N-1 new parameter vectors r,n
2ϑ  (r=1,…,N-1) are 

obtained for the N-1 RBF neural-network architectures considered. Finally, the results 

provided by different unsupervised retraining classifiers are combined by using a classical 

multiple-classifier approach.    

 

4 The Proposed Unsupervised Retraining Classifiers  
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The main idea of the proposed unsupervised retraining approach is that rough estimates of 

the parameter values that characterize the classes considered at the time t2 can be obtained 

by exploiting the parameters of the classifiers estimated at the time t1 by supervised learning. 

Such estimates are then updated in an unsupervised way by using the information contained 

in the distribution p(X2) of the new image X2. In the following, a detailed description of the 

proposed unsupervised retraining technique for the RBF neural-network classifiers is given. 

Concerning the retraining technique for the ML classifier, we provide only a brief description 

since it was already proposed in [6]. 

 

4.1 The Proposed Retraining Technique for the ML Classifier 

In the case of a parametric ML classifier, the vector of parameters that should be estimated 

for classifying the new image X2 is given by:  

 ( ) ( ) ( )[ ]C
p

C,
p
,

p
,

p P,,.....,P,,P, ωθωθωθϑ 22222212122 =   (2) 

where p
i,2θ  is the vector of the parameters that characterize the conditional density function 

( )iXp ω/22  of the class ωi (e.g., the mean vector i,2µ  and the covariance matrix i,2Σ  in the 

Gaussian case). For each class Ω∈iω , the initial values of both the prior probability 

( )iP ω0
2  and the conditional density function ( )iXp ω/2

0
2  can be approximated by the 

values computed in the supervised training phase at t1. Then, such estimates can be improved 
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by exploiting the information associated with the distribution ( )22 Xp  of the new image X2. 

In particular, the proposed method is based on the observation that the statistical distribution 

of the pixel values in X2 can be described by the following mixed-density distribution:  

 ( ) ( ) ( )∑
=

=
C

i
ii /XpPXp

1
22222 ωω  , (3) 

where the mixing parameters and the component densities are the a priori probabilities and 

the conditional density functions of the classes, respectively. In this context, the retraining of 

the ML classifier at the time t2 becomes a mixture density estimation problem, which can be 

solved by exploiting the iterative expectation-maximization (EM) algorithm [11]-[14]. The 

iterative equations to be used are the following: 

 

 
( )∑

∈

+ =
2X2

2
2

1
2

1

jx
jk

t
k

t xP
B

)(P ωω  (4) 
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( )∑
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⋅
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2

2
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X

2

2

2
2

22
2

1
2

j

j

x
jk

t

x
jjk

t

t
k,

xP

xxP

ω

ω
µ  (5) 

 



 11

 

( ) ( ) ( )

( )
.

xP

xxxP

j

j

x
jk

t

x

t
k,j

Tt
k,jjk

t

t
k,

∑

∑

∈

∈

++

+

−−⋅
=

2

2

X

X

2

2

2
2

1
2

21
2

22
2

1
2

ω

µµω
Σ

 

(6) 

 

where the superscripts t and t+1 refer to the values of the parameters at the current and next 

iterations, respectively, the superscript T refers to the vector transpose operation, and the 

estimated posterior probability ( )2
2 jk
t xP ω  is equal to: 

 ( ) ( ) ( )
( ) ( )∑

=
⋅

⋅
= C

i
i

t
ij

t

k
t

kj
t

jk
t

Pxp

Pxp
xP

1
2

2
2

2
2

22
2

ωω

ωω
ω  (7) 

where the density function ( )ij
t xp ω2
2  is computed by using the estimates of the terms t

i,2µ  

and t
i,2Σ  obtained at current iteration. 

For each class Ωω ∈i , the estimates obtained at convergence of the EM algorithm are the 

new parameters of the ML classifier at the time t2. Since the unsupervised retraining 

approach for the ML classifier is not the novel aspect of this paper, we refer the reader to 

[6] for greater details on this method. 
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4.2 The Proposed Unsupervised Retraining Technique for RBF Neural-Network 

Classifiers  

The proposed nonparametric classifier is based on Gaussian RBF neural networks, which 

consist of three layers: an input layer, a hidden layer, and an output layer (see Fig. 1). The 

input layer relies on as many neurons as the input features. The input neurons just propagate 

the input features to the next layer. Each one of the Q neurons in the hidden layer is 

associated with a Gaussian kernel function. The output layer is made up of as many neurons 

as the classes to be recognized. Each output neuron computes a simple weighted summation 

over the responses of the hidden units for a given input pattern (we refer the reader to [5] for 

more details on RBF neural-network classifiers).  

In the context of RBF neural classifiers, the conditional densities of equation (3) can be 

written as a sum of contributes due to the Q kernel functions qϕ  of the neural architecture 

[14]: 

 

 ( ) ( ) ( )∑
=

=
Q

q
qq /XpPXp

1
22222 ϕϕ  , (8) 

 

where the mixing parameters and the component densities are the a priori probabilities and 

the conditional density functions of the kernels. Equation (8) can be rewritten as: 
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 ( ) ( ) ( ) ( )∑ ∑
= =

⋅⋅=
C

i

Q

q
qqqi /XpP/PXp

1 1
222222 ϕϕϕω  , (9) 

where the mixing parameter ( )qi /P ϕω2  is the conditional probability that the kernel qϕ  

belongs to class ωi.  In this formulation, kernels are not deterministically owned by classes; 

so the formulation can be considered as a generalization of a standard mixture model [14]. 

The value of the weight i
qw that connects the q-th hidden unit to the i-th output node, can be 

computed as [14]: 

 
)(P)/(Pw qqi

i
q ϕϕω ⋅=  . (10) 

By analysing equation (9), it can be noticed that, as for the ML classifier, the retraining of the 

RBF classifier at time t2 becomes a parameter estimation problem. In particular, the 

parameter vector to be estimated is given by:  

 ( ) ( )[ ( ),/P,...,/P,P, C,
n

121121122 ϕωϕωϕφϑ = ( ) ( ) ( )]QCQQQ, /P,...,/P,P,..., ϕωϕωϕφ 2122   

  (11) 

where q,2φ  is the vector of parameters that characterises the density function ( )q/Xp ϕ22  

(e.g., if Gaussian kernel functions are considered, q,2φ  is composed of the mean q,2π  and the 

width q,2σ  characterizing the q-th kernel). However, the parameter vector n
2ϑ  is more 

complex to be estimated than the parameter vector p
2ϑ  related to the ML classifier. In 
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particular, the presence of the mixing terms ( )qi /P ϕω2  do not allow the new estimates to be 

accomplished in a fully unsupervised way. Hence, additional information should be available 

in order to compute such statistical terms. In the following, we will assume to know the 

values of the mixing parameters ( )qi /P ϕω ; we refer the reader to the Appendix for the 

description of a technique that exploits the architecture of the proposed system (and, in 

particular, some of the results provided by the ML classifier) for estimating such parameters. 

For simplicity, let us assume that all the Q kernel functions q,2φ are characterized by the same 

width 2σ . Under the above-mentioned assumptions, it is possible to prove that the following 

equations (derived by exploiting the EM algorithm) can be applied iteratively to update the 

RBF neural-network classifier parameters: 

 

 
( )∑

∈

+ =
2X2

2
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1
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B
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(14) 

where the superscripts t and t+1 refer to the values of the parameters at the current and next 

iterations, respectively, and the estimated posterior probability ( )2
2 jq
t xP ϕ  is given by: 

 ( ) ( ) ( )
( ) ( )∑

=
⋅

⋅
= Q

i
i

t
ij

t

q
t

qj
t

jq
t

Pxp

Pxp
xP

1
2

2
2

2
2

22
2

ϕϕ

ϕϕ
ϕ  (15) 

where the density function ( )ij
t xp ϕ2
2  is computed by using the estimates of the terms t

i,2π  

and t
2σ  obtained at current iteration. 

All the components of n
2ϑ  are initialized according to the values obtained in a supervised way 

on the t1 image. It is possible to prove that at each iteration, the log-likelihood function of the 

estimates increases until a maximum is reached.  Although the EM algorithm may converge to 

a local maximum, its convergence is guaranteed [11]-[14]. The values of the parameters 

obtained at convergence for each RBF neural classifier are used to analyse the new image to 

be classified. 

 

5  Multiple Classifier Strategies 

We propose the use of different combination strategies to integrate the complementary 

information provided by the ensemble of unsupervised retraining parametric and non-
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parametric classifiers described in the previous section. The use of these strategies for 

combining the decisions provided by each single classifier results in a more robust behavior in 

terms of accuracy and reliability of the final classification system.  

As stated in Section 3, let us assume that a set of N classifiers (an unsupervised retraining 

ML classifier and N-1 unsupervised retraining RBF neural classifiers with different 

architectures) are retrained on the X2 image in order to update the corresponding parameters 

by using the procedures described in Section 4. In this context, several strategies for 

combining the decisions of the different classifiers can be adopted [15], [16]. We will focus 

on three widely used combination strategies: the Majority Voting [15], the Combination by 

Bayesian Average [16], and the Maximum Posterior Probability strategies. It is worth 

noting that, in our case, the use of these unsupervised combination strategies is mandatory 

because a training set is not available at t2, and therefore more complex supervised 

approaches cannot be adopted. 

The Majority Voting principle faces the combination problem by considering the results 

of each single classifier in terms of the class labels assigned to the patterns. Hence, a given 

input pattern receives N classification labels from the multiple-classifier system, each label 

corresponding to one of the C classes considered. The combination method is based on the 

interpretation of the classification label resulting from each classifier as a “vote” for one of the 
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C land-cover classes. The data class that receives the largest number of votes is taken as the 

class of the input pattern.  

The second method considered, the Combination by Bayesian Average strategy, is based 

on the observation that for a given pixel 2
jx  in the image X2 the N classifiers considered 

provide an approximation of the posterior probability ( )2
2 / ji xP ω  for each class Ωω ∈i . 

Therefore, a possible strategy for combining these classifiers consists in the computation of 

the average posterior probabilities, i.e., 

 ( ) ( )2

1
2

2
2

1
ji

N

n

n
ji

ave x/P̂
N

x/P ωω ∑
=

=  (16) 

where ( )2
2 ji
n x/P̂ ω  is the approximation of the posterior probability ( )2

2 / ji xP ω  provided by 

the n-th classifier. The classification is then carried out according to the Bayes rule by 

selecting the land-cover class associated with the maximum average posterior probability. 

The third method considered (i.e., the Maximum Posterior Probability strategy) is 

based on the same observation of the previous one. However, in this case, the strategy for 

combining classifiers consists in a winner-takes-all approach: the land-cover class that has 

the larger posterior probability among all classifiers is taken as the class of the input pattern. 
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6  Experimental Results 

In order to assess the effectiveness of the proposed approach, different experiments were 

carried out on a data set made up of two multispectral images acquired by the Thematic 

Mapper (TM) multispectral sensor of the Landsat 5 satellite. The selected test site was a 

section (412×382 pixels) of a scene including Lake Mulargias on the Island of Sardinia, Italy. 

The two images used in the experiments were acquired in September 1995 (t1) and July 

1996 (t2). Figure 2 shows channels 2 of both images.  

The available ground truth was used to derive a training set and a test set for each image. 

Five land-cover classes (i.e., urban area, forest, pasture, water body, and vineyard), which 

characterize the test site at the above-mentioned dates, were considered. A detailed 

description of the training and test sets of both images is given in Table 1. To carry out the 

experiments, we assumed that only the training set associated with the image acquired in 

September 1995 was available. It is worth noting that the images considered were acquired 

in different periods of the year. Therefore, in this case, the unsupervised retraining problem 

turned out to be rather complex. 

An ML and two RBF classifiers (one with 60 hidden neurons, i.e., RBF-1, the other with 

80 hidden neurons, i.e., RBF-2) were trained in a supervised way on the September 1995 
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image to estimate the parameters that characterize the density functions of the classes at the 

time t1. For the ML classifier, the assumption of Gaussian distributions was made for the 

density functions of the classes (this was a reasonable assumption, as we considered TM 

images). In order to exploit the non-parametric characteristic of the two RBF neural 

classifiers, they were trained using not only the 6 available spectral channels, but also 5 

texture features based on the gray-level co-occurrence matrix (i.e., sum variance, sum 

average, correlation, entropy and difference variance) [17]. These features were computed 

by using a window size equal to 7x7 and an interpixel distance equal to 1. After the 

supervised training on the X1 image, the effectiveness of the classifiers was evaluated on the 

test sets related to both images (see Table 2). On the one hand, as expected, the classifiers 

provided high overall classification accuracies for the test set related to the September 1995 

image (i.e., 90.97%, 81.79% and 81.74% for the ML, the RBF-1, and the RBF-2 

classifiers, respectively). On the other hand, they exhibited very poor performances on the 

July 1996 test set. In particular, the overall classification accuracy provided by the ML 

classifier for the July test set was equal to 50.43%, which is not an acceptable result. Also 

the accuracies exhibited by the two RBF neural classifiers considered are not sufficiently high 

(i.e., 69.78% and 71.27%).  
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At this point, the considered classifiers were retrained on the t2 image (July 1996) by 

using the proposed unsupervised retraining techniques. The ML and RBF retraining 

processes converged in 11 and 15 iterations, respectively, taking few minutes of processing 

on a Sun Ultra80 workstation. The overall and class-by-class accuracies exhibited by the 

different classifiers after the retraining phase are given in Table 3. By a comparisons of Table 

2 and Table 3, one can see that the classification accuracies provided by the considered 

unsupervised retraining classifiers for the July 1996 test set are sharply higher than the ones 

exhibited by the single classifiers trained on the September 1995 image (i.e., 92.76% vs 

50.43%, 95.34% vs 71.27%, 95.44% vs 69.78% for the ML, the RBF-1, the RBF-2 

classifiers, respectively). In greater detail, the retrained classifiers exhibited high accuracies 

on all land-cover classes, with exception of the vineyard class, which is a minority one. 

At this point, the three classifiers were combined according to the strategies described in 

Section 5. In order to evaluate the accuracy of the resulting classification system, it was 

applied to the July 1996 test set. The overall and class-by-class accuracies yielded are given 

in Table 4. As one can see, the overall accuracies provided by all the considered 

combination strategies (i.e., 95.58%, 95.39%, and 95.75% for the Majority Voting, the 

Bayesian Average, and the Maximum Posterior Probability strategies, respectively) are 
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similar to the one yielded by the best-performing classifier composing the ensemble (i.e., 

95.44% obtained by the RBF-2 classifier).  

It is worth stressing that the objective of the multiple-classifier architecture is not only to 

increase the accuracy of the classification system but also to increase its robustness. In 

particular, the combination strategy should allow one to recover the possible failure of a 

single unsupervised retraining classifier of the ensemble by exploiting the results provided by 

the other considered classifiers. In order to assess this last issue, an experiment was carried 

out in which the failure of the retraining process of one of the RBF classifiers (i.e., RBF-1) 

was simulated. To this end, the RBF classifier with 60 hidden neurons, after being trained on 

the X1 image, was not retrained on the X2 image (let us indicate this classifier as RBF-3). In 

this condition, the classification accuracy exhibited by the RBF-3 classifier on the July 1996 

test set results equal to the one yielded by the RBF-1 classifier on the same test set before 

the unsupervised retraining phase (see Table 2). As already observed, this overall accuracy 

(i.e., 71.27%) is not acceptable. At this point, the ML classifier and the RBF-2 and RBF-3 

neural classifiers were combined according to the strategies described in Section 5. The 

accuracies exhibited by the resulting multiple-classifier system are reported in Table 5. As 

one can see, even though RBF-3 provided low accuracy on the July 1996 test set, all the 

combination strategies resulted in high classification accuracies, so recovering the simulated 
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failure of the unsupervised retraining process. In greater detail, the obtained accuracies are 

comparable to the ones achieved by combining the three “well-retrained” classifiers (i.e., 

ML, RBF-1, and RBF-2).  

 

7  Discussion and Conclusions  

In this paper, the problem of unsupervised retraining of classifiers for the updating of land-

cover maps has been addressed in the framework of a multiple-classifier system. The 

proposed system produces accurate land-cover maps of a specific study area also from 

images for which a reliable ground truth (and hence a suitable training set) is not available. 

This is made possible by an unsupervised updating of the parameters of an ensemble of 

parametric and non-parametric classifiers on the basis of the new image to be classified. In 

particular, an ML parametric classifier and RBF neural network non-parametric classifiers 

have been considered. However, given the complexity inherent with the task of unsupervised 

retraining, the resulting classifiers are intrinsically less reliable and less accurate than the 

corresponding supervised approaches, especially for complex data sets. Therefore, the use 

of methodologies for the combination of classifiers has been proposed in order to increase 

the reliability and the accuracy of single unsupervised retraining classifiers. 
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Although extensive experiments on other data sets are necessary for a final validation of 

the method, the results we obtained on the considered data set are very interesting. In 

particular, they pointed out that the proposed system is a promising tool for attaining high 

classification accuracies also for images of a given area for which an updated training set is 

not available. 

The presented method is based on the assumption that the estimates of the classifier 

parameters derived from a supervised training on a previous image of the considered area 

can represent rough estimates of the class distributions in the new image to be categorised. 

Then the EM algorithm is applied in order to iteratively improve such estimates on the basis 

of the global density function of the new image. 

It is worth noting that the initial estimates usually cannot be directly used to classify the 

new image to be analyzed. In fact in practical situation, depending on differences in the 

atmospheric or light conditions existing between the two acquisition dates, such initial 

estimates may be significantly different from the true ones. The proposed method copes with 

this situation, i.e., the EM algorithm is able to improve the initial estimates so that the 

classification of the new image can be accurately performed. However, in order to minimize 

the possibility that the retraining does not converge to accurate estimates, if possible, we 

recommend the application of a pre-processing phase aimed at reducing the differences 
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between images due to the above-mentioned factors (simple correction algorithms can be 

adopted).  

At the present, the authors are addressing the problem of defining criteria suitable to identify 

the cases in which the initial estimates of the class distributions are so different from the true 

ones that may involve a failure of the retraining process. 

 

Appendix I. Estimation of the Mixing Parameters ( )qi /P ϕω2  for the Retraining of 

RBF Neural-Network Classifiers  

In this appendix, we propose a method for estimating the values of the mixing parameters 

( )qi /P ϕω2  of the RBF neural classifiers (see section 4.2). These parameters can be 

estimated by exploiting the multiple-classifier architecture of the proposed system. In 

particular, they can be derived by using the updated parameter vector of the ML classifier. 

The strategy adopted is the following. Let L2 be the set of pixels 2
jx  that are most likely 

correctly classified by the ML classifier. This set can be identified by analysing the estimates 

of the posterior probability ( )2
2 ji x/P ω  provided by the ML classification algorithm. Let us 

consider the j-th pixel  2
jx of the image X2 and let us assume that  2

jx  is classified by the ML 

classifier as belonging to the class ωk  (i.e., ( ){ }  2
2 /maxarg jik xP

i

ωω
ω Ω∈

= ). The pixel  2
jx  is 
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likely to be correctly classified by the ML classifier (and thus is assigned to the set L2 and 

labelled as belonging to the class ωk) if its estimated posterior probability is above a given 

threshold (i.e., ( ) αω ≥2
2 jk x/P , where 0.5<α<1 is a real number usually close to 1). The 

set L2 is then used to estimate the mixing parameters ( )qi /P ϕω2  according to the following 

iterative equation: 

 
( )

( )
( )∑

∑

∈

∈+ =

2
2

2
2

2
2

2
2

1
2

L
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j

i
j
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jq

t

x
jq

t

qi
t

xP

xP

/P
ϕ

ϕ
ϕω

 (17)
 

where i
2L is the subset of L2  containing the pixels   2

jx  labelled as belonging to the class ωi. 

At each step of the EM algorithm used for the unsupervised estimation of the other RBF 

neural-network parameters [see equations (12), (13), and (14)], also the equation (17) is 

iterated in order to increase the accuracy in the estimation of the mixing parameters.  

 

Appendix II. Derivation of the Equations for Estimating the Parameters of  RBF 

Neural-Network Classifiers  

Equation (12)-(14) and (17) can be derived by maximizing the following log-likelihood 

function: 

  ( ) ( ) ( )[ ]+= ∑ ∑
∉ =

2
2 1

2
2

222
L

X
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Q

q
qqj

n P/xplog ϕϕϑΨ  
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which is equivalent to minimizing the error function ( )nE 22 ϑX : 

 ( ) ( )nnE 2222 ϑΨϑ XX −=  (19) 

This task can be achieved by means of the technique described in [18]. In particular, let us 

consider the change E∆ in the function (19) when replacing the parameter values of the 

current iteration with the one of the next iteration: 

 ( ) ( ) =−= + ntnt EEE 22
1 ϑϑ∆ 22 XX   

 

( ) ( ) ( )
( )

( ) ( )[ ]
+












⋅

−= ∑
∑

∑

∉

=

=

++

2
2

1
2

2
2

1
2

2

2
21

2
21

2

Ljx
Q

r
r

t
rj

t

Q

q jq
t

jq
t

q
t

qj
t

P/xp

x/P

x/P
P/xp

log
ϕϕ

ϕ
ϕ

ϕϕ
   

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )[ ]
∑ ∑

∑

∑

= ∈

=

=

+++
































⋅

−
C

i

B

x
Q

r
ri

t
r

t
rj

t

Q

q jq
t

jq
t

qi
t

q
t

qj
t

i
j PP/xp

xP

xP
PP/xp

log
1

1
22

2
2

1
2

2

2
21

2
1

2
21

2

2
2 L ϕωϕϕ

ϕ
ϕ

ϕωϕϕ

 (20) 

where ( )ntE 22 ϑX  and ( )ntE 22
1 ϑX+  are the error functions computed with the parameters 

estimated at the current and next iterations, respectively. The terms ( )2
2 jq
t x/P ϕ  are 

introduced in order to apply the Jensen’s inequality. Thanks to such inequality, the following 

upper-bound can be obtained: 
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We aim at minimizing this bound with respect to the values of the parameters computed at 

the next iteration.  Dropping the terms which depends only on the “old” parameters, the 

right-hand side of (21) can be rewritten as: 
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and for the Gaussian case: 
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At this point it is possible to minimize  Θ (and hence the error function ( )ntE 22
1 ϑX+ ) with 

respect to the “new” parameters. Concerning the parameters 2σ  and q,2π  the minimization 



 28

is straightforward and leads to equations (13)-(14). Concerning the parameters ( )qP ϕ2  and 

( )qiP ϕω2  the following constraints should be considered: 

 ( ) 1
1

2 =∑
=

Q

q
qP ϕ  (24)  

 ( ) 1
1

2 =∑
=

C

i
qiP ϕω  (25) 

This can be easily done by introducing two Lagrange multipliers. Accordingly equations (12) 

and (17) can be obtained. 
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FIGURE CAPTIONS 
 

 

Fig. 1. Standard architecture of a supervised RBF neural-network classifier. 

 

Fig. 2. Channel 5 of the Landsat-5 TM images utilized for the experiments: (a) image 

acquired in September 1995; (b) image acquired in July 1996. 
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TABLE CAPTIONS 
 

Table 1. Number of patterns in the training and test sets of both the September 1995 and 
July 1996 images. 
 
 
 
Table 2. Overall classification accuracies exhibited by the considered classifiers (trained in a 
supervised way on the September 1995 image) before the unsupervised retraining. 
 
 
 
Table 3. Classification accuracies exhibited by the considered classifiers on the July 1996 
test set after the unsupervised retraining. 
 
 
 
Table 4. Classification accuracies exhibited by the proposed multiple-classifier system on the 
July 1996 test set. 
 
 
 
Table 5. Classification accuracies exhibited by the proposed multiple-classifier system on the 
July 1996 test set when the failure of the unsupervised retraining of RBF-3 was simulated. 
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Table 1 

 
 

Number of patterns Land-cover class 
Training set Test set 

Pasture  554 589 
Forest 304 274 

Urban area 408 418 
Water body 804 551 

Vineyard  179 117 
Overall 2249 1949 

 
 

Table 2 
 

Classification 
technique 

Overall classification accuracy (%) 

 Test set  (September 1995) Test set  (July 
1996) 

ML 90.97 50.43 

RBF-1 81.79 71.27 

RBF-2 81.74 69.78 

 
 

Table 3 
 

Classification accuracy (%) 
 (July 1996 test set) Land-cover class 

ML RBF-1 RBF-2 
Pasture  94.06 99.83 100.00 
Forest 87.22 98.54 98.90 

Urban area 93.06 98.56 98.56 
Water body 100.00 100.00 100.00 

Vineyard  64.10 31.62 31.62 
Overall 92.76 95.34 95.44 
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Table 4 

 

Classification accuracy (%) 

(July 1996 test set) Land-cover class 
Majority Voting Bayesian Average Maximum Posterior 

Probability 
Pasture  100.00 99.83 99.32 
Forest 98.90 98.90 98.54 

Urban area 98.56 98.56 98.08 
Water body 100.00 100.00 100.00 

Vineyard  34.18 31.62 42.73 
Overall 95.58 95.39 95.75 

 
 

 
 
 

 
Table 5 

 

Classification accuracy (%) 

(July 1996 test set) Land-cover class 
Majority Voting Bayesian Average Maximum Posterior 

Probability  
Pasture  98.47 96.43 90.83 
Forest 98.90 98.90 99.27 

Urban area 98.56 97.84 98.08 
Water body 100 100 100 

Vineyard  58.11 52.13 58.11 
Overall 96.56 95.43 94.20 

 
 

 
 


