In this paper we consider some Lorenz gauged vector potential formulations of the eddy-current problem for the time-harmonic Maxwell equations with material properties having only L1-regularity. We prove that there exists a unique solution of these problems, and we show the convergence of a suitable finite element approximation scheme. Moreover, we show that some previously proposed Lorenz gauged formulations are indeed formulations in terms of the modified magnetic vector potential, for which the electric scalar potential is vanishing.

Lorenz gauged vector potential formulations for the time-harmonic eddy-current problem with L∞-regularity of material properties / Fernandes, Paolo; Valli, Alberto. - ELETTRONICO. - (2006), pp. 1-27.

Lorenz gauged vector potential formulations for the time-harmonic eddy-current problem with L∞-regularity of material properties

Valli, Alberto
2006-01-01

Abstract

In this paper we consider some Lorenz gauged vector potential formulations of the eddy-current problem for the time-harmonic Maxwell equations with material properties having only L1-regularity. We prove that there exists a unique solution of these problems, and we show the convergence of a suitable finite element approximation scheme. Moreover, we show that some previously proposed Lorenz gauged formulations are indeed formulations in terms of the modified magnetic vector potential, for which the electric scalar potential is vanishing.
2006
Trento
Università degli Studi di Trento - Dipartimento di Matematica
Lorenz gauged vector potential formulations for the time-harmonic eddy-current problem with L∞-regularity of material properties / Fernandes, Paolo; Valli, Alberto. - ELETTRONICO. - (2006), pp. 1-27.
Fernandes, Paolo; Valli, Alberto
File in questo prodotto:
File Dimensione Formato  
UTM697.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 239.6 kB
Formato Adobe PDF
239.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact