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Abstract. In this paper we consider some Lorenz gauged vector potential for-

mulations of the eddy-current problem for the time-harmonic Maxwell equations with

material properties having only L∞-regularity. We prove that there exists a unique

solution of these problems, and we show the convergence of a suitable finite element

approximation scheme. Moreover, we show that some previously proposed Lorenz

gauged formulations are indeed formulations in terms of the modified magnetic vector

potential, for which the electric scalar potential is vanishing.

1. Introduction

Let us consider a bounded connected open set Ω ⊂ R3, with boundary
∂Ω. The unit outward normal vector on ∂Ω will be denoted by n. We assume
that Ω is split into two parts, Ω = ΩC ∪ ΩI , where ΩC (a non-homogeneous
isotropic conductor) and ΩI (a perfect insulator) are open disjoint subsets, such
that ΩC ⊂ Ω. We denote by Γ := ∂ΩI ∩ ∂ΩC the interface between the two
subdomains; note that, in the present situation, ∂ΩC = Γ and ∂ΩI = ∂Ω ∪ Γ.

In this paper we study the time-harmonic eddy-current problem, which is
derived from the full Maxwell system by neglecting the displacement current
term ∂D

∂t , and by assuming that the electric field E , the magnetic field H and
the applied current density Je are of the form

E(t,x) = Re[E(x) exp(iωt)]
H(t,x) = Re[H(x) exp(iωt)]
Je(t,x) = Re[Je(x) exp(iωt)] ,

where ω 6= 0 is a given angular frequency (see, e.g., Bossavit [6], p. 219).
The constitutive relation B = µH (where µ is the magnetic permeability

coefficient) is assumed to hold, as well as the (generalized) Ohm’s law J =
σE + Je (where σ is the electric conductivity).

The magnetic permeability µ is assumed to be a (real) symmetric matrix,
uniformly positive definite in Ω, with entries in L∞(Ω). Since ΩI is a perfect
insulator, we require that σ|ΩI

≡ 0; moreover, as ΩC is a non-homogeneous
isotropic conductor, σ|ΩC

is assumed to be a (real) scalar L∞(ΩC)-function,
uniformly positive in ΩC .
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Concerning the boundary condition, we consider the magnetic boundary
value problem, namely, H × n, representing the tangential component of the
magnetic field, is assumed to vanish on ∂Ω. The case of the electric boundary
value problem, in which E × n = 0 on ∂Ω, can be treated following a similar
approach, but in the sequel we will not dwell on it.

We make the following assumptions on the geometry of Ω:

(H1)
either ∂Ω ∈ C1,1, or else Ω is a Lipschitz polyhedron;
the same assumption holds for ΩC and ΩI .

For the sake of simplicity, we also suppose that:

• ∂Ω and Γ are connected

• non-bounding cycles are not present neither on ∂Ω, regarded as a part of
the boundary of ΩI , nor on Γ, regarded as the boundary of ΩC .

The last assumption means that each cycle on ∂Ω (respectively, on Γ) can
be represented as ∂S, S being a surface contained in ΩI (respectively, in ΩC).

From all this, we know in particular that the spaces of harmonic fields

HΓ;∂Ω(ΩI) := {vI ∈ (L2(ΩI))
3 | rotvI = 0, divvI = 0,

vI × nI = 0 on Γ,vI · n = 0 on ∂Ω}

H(m; ΩC) := {vC ∈ (L2(ΩC))3 | rotvC = 0, divvC = 0,vC · nC = 0 on Γ}

H(e; ΩC) := {vC ∈ (L2(ΩC))3 | rotvC = 0, divvC = 0,vC × nC = 0 on Γ}

H(m; Ω) := {v ∈ (L2(Ω))3 | rotv = 0, divv = 0,v · n = 0 on ∂Ω}

are trivial.
The vector potential formulation of the eddy-current problem in a general

geometrical configuration is more technical, and could be faced by adapting
the procedure described in Bı́ró and Valli [4] (for the Coulomb gauged vector
potential formulation).

Let us assume that the current density Je ∈ (L2(Ω))3 satisfies the (neces-
sary) conditions

(H2) divJe,I = 0 in ΩI , Je · n = 0 on ∂Ω .

In Alonso Rodŕıguez, Fernandes and Valli [3] it has been proved that, in
the present geometrical situation, the complete system of equations describing
the eddy-current problem in terms of the magnetic field H and the electric field
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EC is:

(1.1)






rotEC + iωµCHC = 0 in ΩC

rotHC − σCEC = Je,C in ΩC

rotHI = Je,I in ΩI

div(µIHI) = 0 in ΩI

HI × n = 0 on ∂Ω

µIHI · nI + µCHC · nC = 0 on Γ

HI × nI + HC × nC = 0 on Γ ,

where nC = −nI is the unit outward normal vector on ∂ΩC = Γ, and we have
set EC := E|ΩC

(and similarly for ΩI and any other restriction of function). In
particular, in [3] it is proved that, under the assumptions (H1)–(H2), problem
(1.1) has a unique solution (H,EC) ∈ H(rot; Ω) ×H(rot; ΩC).

In the following, we consider problem (1.1) in terms of the Lorenz gauged
vector potential formulation, that we present in Section 2 in three alternative
versions. In Section 4 we will prove that these formulations are well-posed,
namely, there exists a solution for each one of them and this solution is unique.
Moreover, in Sections 5 and 6 we will derive the three corresponding variational
formulations, and finally establish a stability result and prove the convergence
of a suitable finite element approximation by nodal elements for two of them.

In Section 3 we will also comment on other previously proposed Lorenz
gauged vector potential formulations, showing in particular that in the one
presented by Bossavit [7] a different gauge was indeed indirectly enforced.

2. The (AC , VC)–AI formulation

We are looking for a magnetic vector potential A and a scalar electric
potential VC such that

(2.1) EC = −iωAC − gradVC , µCHC = rotAC , µIHI = rotAI .

In this way one has rotEC = −iω rotAC = −iωµCHC , and therefore the
Faraday equation in ΩC is satisfied. Moreover, µIHI is a solenoidal field in ΩI .

The matching conditions for µH · n can be enforced by

(2.2) AI × nI + AC × nC = 0 on Γ ,

as taking the tangential divergence of this relation one finds

rotAI · nI + rotAC · nC = 0 on Γ .
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As a consequence, we have µH = rotA in the whole Ω.
In order to have a unique vector potential A, it is necessary to impose some

gauge conditions: instead of the most commonly used Coulomb gauge divA = 0
in Ω, we consider the Lorenz gauge

(2.3) divAC + µ∗,CσCVC = 0 in ΩC , divAI = 0 in ΩI ,

where the scalar function µ∗ = µ∗(x), defined in Ω and satisfying µ∗ ∈ L∞(Ω),
0 < µ∗,1 ≤ µ∗(x) ≤ µ∗,2 in Ω, will be chosen in the sequel. (For instance, one
can think that µ∗ = 1

3 trace(µ), so that µ∗,1 = µmin, the minimum eigenvalue of
µ in Ω, and µ∗,2 = µmax, the maximum eigenvalue of µ in Ω.)

Moreover, we also assume the boundary condition

(2.4) A · n = 0 on ∂Ω ,

and an additional condition on the interface Γ. In this respect, we consider
three possible alternatives: the first one is the “slip” condition

(2.5) AC · nC = 0 on Γ ;

the second one is the Dirichlet condition

(2.6) VC = 0 on Γ ;

the last one is the matching condition

(2.7) AI · nI + AC · nC = 0 on Γ

(in Section 4 these three choices will be called case (i), case (ii) and case (iii),
respectively).

Let us start specifying in detail the formulation associated to the matching
condition (2.7). First, note that (2.3)2, (2.4) and (2.7) imply that

∫
Γ AI · nI =

0 =
∫
Γ AC · nC , hence

∫
ΩC

divAC = 0. As a consequence, we can also impose

(2.8)

∫

ΩC

µ∗,CσCVC = 0

without actually introducing any further constraint.
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In conclusion, taking into account (1.1), we are left with the problem

(2.9)






rot(µ−1
C rotAC) + iωσCAC + σC gradVC = Je,C in ΩC

rot(µ−1
I rotAI) = Je,I in ΩI

divAC + µ∗,CσCVC = 0 in ΩC

divAI = 0 in ΩI

AI · n = 0 on ∂Ω

(µ−1
I rotAI) × n = 0 on ∂Ω

AI · nI + AC · nC = 0 on Γ

AI × nI + AC × nC = 0 on Γ

(µ−1
I rotAI) × nI + (µ−1

C rotAC) × nC = 0 on Γ

∫
ΩC

µ∗,CσCVC = 0 .

If we replace the interface condition (2.9)7 (i.e. (2.7)) with (2.5), we obtain
another problem, that will be denoted by (2.9)*. Moreover, if we replace (2.9)7
with (2.6) and we drop the average condition (2.9)10, we obtain a third problem,
that will be denoted by (2.9)**.

Defining

(2.10) J :=

{
Je,C − iωσCAC − σC gradVC in ΩC
Je,I in ΩI

,

as a consequence of (2.9) (or (2.9)*, or (2.9)**) we also have rot(µ−1 rotA) = J

in Ω, therefore

(2.11)

{
div(iωσCAC + σC gradVC − Je,C) = 0 in ΩC
(iωσCAC + σC gradVC − Je,C) · nC = Je,I · nI on Γ .

Remark 2.1. As we have already noted, the condition
∫
ΩC

µ∗,CσCVC = 0

follows from the gauge conditions (2.9)3, (2.9)4, (2.9)5 and (2.9)7. Therefore,
we could omit it in (2.9). However, this vanishing average condition will be
useful when we will analyze the variational formulation of the Lorenz gauged
eddy-current problem in Section 5; hence we prefer to keep it in formulation
(2.9). The same remark applies to the formulation (2.9)*.
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3. Lorenz gauge or something else?

As a starting point, with the aim of making clear the reasons of our choice
in Section 5, let us discuss some of the variational formulations that have been
previously proposed for problem (2.9) (or (2.9)*, or (2.9)**). Let us point out
that we are not assuming that σC is smooth, but only that σC ∈ L∞(ΩC).

In the following, in order to give a meaning to the integrals we are going to
consider, we assume, as it will be proved in Section 4, that there exists a solution
to (2.9) (or (2.9)*, or (2.9)**), satisfying (A, VC) ∈ Q0 ×H1(ΩC), where

Q0 := {w ∈ H(rot; Ω) | divwC ∈ L2(ΩC), divwI ∈ L2(ΩI),
wI · n = 0 on ∂Ω} ,

and moreover we consider the space of test functions

W0 := {w ∈ H(rot; Ω) | div(σCwC) ∈ L2(ΩC), divwI ∈ L2(ΩI),
wI · n = 0 on ∂Ω}

(for a smooth conductivity σC we have Q0 = W0).
We also note that, for the ease of the reader, in the sequel we are always

denoting the duality pairings as surface integrals (the interested reader can refer
to Bossavit [6], Dautray and Lions [12], Girault and Raviart [14] for more details
on these aspects related to functional analysis and to linear spaces of functions).

Multiply (2.9)1 and (2.9)2 by a test function w ∈ W0 and integrate in Ω.
Integration by parts yields:

(3.1)

∫
ΩC

[µ−1
C rotAC · rotwC + iωσCAC · wC − VC div(σCwC)]

−
∫
Γ[(µ−1

C rotAC) × nC ] · wC +
∫
Γ VCσCwC · nC

=
∫
ΩC

Je,C · wC

∫
ΩI
µ−1
I rotAI · rotwI

−
∫
Γ∪∂Ω[(µ−1

I rotAI) × nI ] ·wI

=
∫
ΩI

Je,I · wI .

Using the Lorenz gauge in ΩC permits to replace the unknown VC and gives

(3.2)

∫
ΩC

[µ−1
C rotAC · rotwC + µ−1

∗,Cσ
−1
C divAC div(σCwC)]

+
∫
ΩC

iωσCAC · wC

−
∫
Γ[(µ−1

C rotAC) × nC ] · wC +
∫
Γ VCσCwC · nC

=
∫
ΩC

Je,C · wC .

For what is concerned with the other equation, as the Lorenz gauge in ΩI is
divAI = 0, we can also write

(3.3)

∫
ΩI

(µ−1
I rotAI · rotwI + µ−1

∗,I divAI divwI)

−
∫
Γ∪∂Ω

[(µ−1
I rotAI) × nI ] · wI

=
∫
ΩI

Je,I ·wI .
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Taking into account the interface and boundary conditions, we add (3.2)
and (3.3) and we find that A satisfies

(3.4)

∫
Ω
µ−1 rotA · rotw +

∫
ΩC

µ−1
∗,Cσ

−1
C divAC div(σCwC)

+
∫
ΩC

iωσCAC ·wC +
∫
ΩI
µ−1
∗,I divAI divwI

+
∫
Γ VCσCwC · nC

=
∫
Ω

Je · w ∀ w ∈ W0 .

To conclude, let us obtain the variational formulation for the scalar poten-
tial. From (2.11), we see that VC satisfies

0 = −
∫
ΩC

div(iωσCAC + σC gradVC − Je,C)ψC
=

∫
ΩC

(iωσCAC + σC gradVC − Je,C) · gradψC
−

∫
Γ
(iωσCAC + σC gradVC − Je,C) · nC ψC

=
∫
ΩC

(iωσCAC + σC gradVC − Je,C) · gradψC −
∫
Γ Je,I · nI ψC ,

namely

(3.5)

∫
ΩC

σC gradVC · gradψC = −
∫
ΩC

iωσCAC · gradψC
+

∫
ΩC

Je,C · gradψC +
∫
Γ
Je,I · nI ψC ∀ ψC ∈ H1(ΩC) .

Now, in order to obtain a formulation which looks feasible and for which the
unknowns A and VC are decoupled, we have to eliminate the term containing
VC in (3.4). This can be done either assuming that the test function w belongs
to W00, where

W00 := {w ∈ W0 | σCwC · nC = 0 on Γ} ,

or else using the interface condition (2.6), i.e., VC = 0 on Γ.
In the first case the final problem, associated to the interface conditions

(2.5) or (2.7), is

(3.6)

A ∈ Q0 :
∫
Ω µ

−1 rotA · rotw +
∫
ΩC

µ−1
∗,Cσ

−1
C divAC div(σCwC)

+
∫
ΩC

iωσCAC · wC +
∫
ΩI
µ−1
∗,I divAI divwI

=
∫
Ω Je · w ∀ w ∈ W00 ,

followed by

(3.7)

VC ∈ H1
∗ (ΩC) :

∫
ΩC

σC gradVC · gradψC
= −

∫
ΩC

iωσCAC · gradψC +
∫
ΩC

Je,C · gradψC
+

∫
Γ Je,I · nI ψC ∀ ψC ∈ H1

∗ (ΩC) ,

where

H1
∗ (ΩC) :=

{
ψC ∈ H1(ΩC) |

∫

ΩC

µ∗,CσCψC = 0
}
.
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In the latter case the problem, associated to the interface condition (2.6),
is

(3.8)

A ∈ Q0 :
∫
Ω
µ−1 rotA · rotw +

∫
ΩC

µ−1
∗,Cσ

−1
C divAC div(σCwC)

+
∫
ΩC

iωσCAC · wC +
∫
ΩI
µ−1
∗,I divAI divwI

=
∫
Ω Je · w ∀ w ∈ W0 ,

followed by

(3.9)
VC ∈ H1

0 (ΩC) :
∫
ΩC

σC gradVC · gradψC = −
∫
ΩC

iωσCAC · gradψC
+

∫
ΩC

Je,C · gradψC ∀ ψC ∈ H1
0 (ΩC) .

While problems (3.7) and (3.9) are classical elliptic boundary value prob-
lems, without additional assumptions the formulations (3.6) or (3.8) are not
easy to handle. A favourable situation appears when σC = const, as, first of
all, in this case one has Q0 = W0 and, moreover, for the interface condition
(2.5) we know that A ∈ W00. Therefore, in problems (3.6) (for the interface
condition (2.5)) and (3.8) (for the interface condition (2.6)), the space of trial
functions and the space of test functions are the same (on the contrary, even for
σC = const this is not the case for the interface condition (2.7)). Furthermore,
one also has

∫
ΩC

µ−1
∗,Cσ

−1
C divAC div(σCwC) =

∫
ΩC

µ−1
∗,C divAC divwC , so that

the first order terms in the sesquilinear forms at the left hand side of (3.6) and
(3.8) are hermitian and positive definite.

An analysis of these two formulations for σC = const is presented here
below, for a slightly generalized form of the Lorenz gauge proposed by Bossavit
[7], that indeed for σC = const coincides with the usual one. However, in the
general case of a non-constant σC , the formulations (3.6) and (3.8) are not
suitable: for instance, it is not clear that an uniqueness result holds for them,
even if in (3.6) we use the additional information that the solution satisfies (2.5)
or (2.7).

A change of the point of view is thus in order. Bossavit [7] proposed to
modify the Lorenz gauge in ΩC in the following way:

(3.10) div(σCAC) + µ∗,Cσ
2
CVC = 0 in ΩC ,

which, as we already noted, for a constant value of σC reduces to the usual
Lorenz gauge. Accordingly, instead of the interface condition (2.5) one has to
consider σCAC · nC = 0 on Γ, while condition (2.6) is kept unchanged (in the
following, the interface condition (2.7) will not be considered).

Let us suppose that there exists a solution (A, VC) ∈ W00 ×H1(ΩC) (for
the interface condition σCAC ·nC = 0 on Γ) or (A, VC) ∈ W0×H1

0 (ΩC) (for the
interface condition (2.6)) to these Bossavit–Lorenz gauged problems; without
entering into details, we note that we could adapt the proofs reported in Section
4 to show that these existence results are in fact true.

Proceeding as before, for the interface condition σCAC · nC = 0 on Γ the
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corresponding variational formulation now reads:

(3.11)

A ∈W00 :
∫
Ω µ

−1 rotA · rotw
+

∫
ΩC

µ−1
∗,Cσ

−2
C div(σCAC) div(σCwC)

+
∫
ΩC

iωσCAC · wC +
∫
ΩI
µ−1
∗,I divAI divwI

=
∫
Ω

Je · w ∀ w ∈ W00 .

Similarly, for the interface condition (2.6) one can write:

(3.12)

A ∈W0 :
∫
Ω
µ−1 rotA · rotw

+
∫
ΩC

µ−1
∗,Cσ

−2
C div(σCAC) div(σCwC)

+
∫
ΩC

iωσCAC · wC +
∫
ΩI
µ−1
∗,I divAI divwI

=
∫
Ω Je · w ∀ w ∈ W0 .

These variational problems look indeed easier to handle. First of all, it
is easy to prove that they are well-posed, namely, that uniqueness holds. In
fact, for Je = 0 it follows at once that AC = 0 in ΩC ; consequently, AI

satisfies rotAI = 0 in ΩI , divAI = 0 in ΩI , AI · n = 0 on ∂Ω and finally
AI × nI = −AC × nC = 0 on Γ, hence AI = 0 in ΩI .

Another important result is the following: the function µ−1
∗,Cσ

−2
C div(σCAC)

has a distributional gradient belonging to (L2(ΩC))3 and, moreover, divAI = 0
in ΩI . (Since, as we have already noted, it is possible to show that there exists a
solution to the Bossavit–Lorenz gauged vector potential problems, these results
are indeed trivial, as µ−1

∗,Cσ
−2
C div(σCAC) = −VC ∈ H1(ΩC), and divAI = 0 is

the gauge condition in ΩI ; however, it is useful to show that they follow directly
from the intrinsic structure of the variational problems (3.11) or (3.12).)

In fact, take qC ∈ (C∞
0 (ΩC))3 and let ϕC ∈ H1(ΩC) be the solution of the

Neumann problem

(3.13)






div(σC gradϕC) + iωµ∗,Cσ
2
CϕC = divqC in ΩC

σC gradϕC · nC = 0 on Γ

(for the interface condition σCAC · nC = 0 on Γ) or of the Dirichlet problem

(3.14)






div(σC gradϕC) + iωµ∗,Cσ
2
CϕC = divqC in ΩC

ϕC = 0 on Γ

(for the interface condition (2.6)). Then, for gI ∈ L2(ΩI) let ϕI ∈ H1(ΩI) be
the solution of the mixed problem

(3.15)






∆ϕI = µ∗,IgI in ΩI

ϕI = ϕC on Γ

gradϕI · n = 0 on ∂Ω .
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Setting

(3.16) ϕ :=

{
ϕC in ΩC
ϕI in ΩI

,

we have gradϕ ∈ W00 (respectively, gradϕ ∈ W0) for the interface condition
σCAC · nC = 0 on Γ (respectively, for the interface condition (2.6)). Choosing
the test function w = gradϕ in (3.11) or in (3.12) gives

∫
ΩC

iωσCAC · gradϕC = −
∫
ΩC

iω div(σCAC)ϕC +
∫
Γ
iωσCAC · nC ϕC

= −
∫
ΩC

iω div(σCAC)ϕC

and ∫
Ω Je · gradϕ =

∫
ΩC

Je,C · gradϕC +
∫
ΩI

Je,I · gradϕI
=

∫
ΩC

Je,C · gradϕC +
∫
Γ
Je,I · nI ϕI ,

therefore

(3.17)

∫
ΩC

µ−1
∗,Cσ

−2
C div(σCAC) divqC +

∫
ΩI

divAI gI
=

∫
ΩC

Je,C · gradϕC +
∫
Γ Je,I · nI ϕC .

Taking qC = 0 we have ϕC = 0 in ΩC , hence the right hand side in (3.17)
is vanishing, and we conclude that divAI = 0 in ΩI .

The map qC →
∫
ΩC

Je,C · gradϕC +
∫
Γ
Je,I · nI ϕC is anti-linear and

continuous with respect to the norm in (L2(ΩC))3. Therefore, it can be ex-
tended by density to qC ∈ (L2(ΩC))3, and then, by the Riesz theorem, repre-
sented as

∫
ΩC

GC · qC for a suitable GC ∈ (L2(ΩC))3. In conclusion, we have

grad[µ−1
∗,Cσ

−2
C div(σCAC)] = −GC ∈ (L2(ΩC))3 in ΩC .

However, the most interesting property of the solution A to the variational
problems (3.11) or (3.12) stems when the current density satisfies the assumption
divJe = 0 in Ω (namely, due to (H2), divJe,C = 0 in ΩC and Je,C · nC + Je,I ·
nI = 0 on Γ). In this case the formulations (3.11) and (3.12) are not related
to a “genuine” Lorenz gauged problem, as we find div(σCAC) = 0 in ΩC . In
fact, by integrating by parts one easily sees that the right hand side of (3.17)
is vanishing, and, repeating the arguments above by replacing divqC in (3.13)
and (3.14) with µ∗,Cσ

2
CgC , where gC ∈ L2(ΩC), we end up with

∫
ΩC

div(σCAC)gC = 0 ,

hence div(σCAC) = 0 in ΩC .
Furthermore, from the variational problems (3.7) (with H1

∗ (ΩC) replaced
by H1

∗∗(ΩC) := {ψC ∈ H1(ΩC) |
∫
ΩC

µ∗,Cσ
2
CψC = 0}. in order to be consistent

with the gauge condition (3.10)) or (3.9), it follows that VC = 0 in ΩC .
In conclusion, under the very common assumption divJe = 0 in Ω the

formulations (3.11) and (3.12) are not “genuine” Lorenz gauged formulations,
since they both essentially reduce to the well-known formulation in terms of the
modified magnetic vector potential A∗ = iω−1E, which, however, is more easily
handled by setting VC = 0 in ΩC from the beginning.
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Moreover, the results in Costabel, Dauge and Nicaise [11] show that the
piecewise H1-regularity of A that is required for the convergence of a finite
element approximation when nodal elements with double degrees of freedom on
the interfaces are used (a possibility considered in [7]) is not guaranteed except
for very specific geometrical configurations.

Remark 3.1. The assumption divJe = 0 in Ω is not needed to solve the
eddy-current problem, as the necessary and sufficient condition for solving it is
just (H2). However, as the physically significant quantity to be found in ΩC is J,
owing to (2.10) Je,C is somehow arbitrary. Hence, the divergence-free condition
on Je is not particularly restrictive, and is very often imposed. As a matter
of fact, it is automatically satisfied whenever the support of Je is contained in
ΩI , and may be a convenient additional condition in more complicate situations
(see, e.g., Bossavit [5], Section 5.2.1, Fig. 5.4).

Remark 3.2. In Bossavit [7], a variant of (3.11) is also proposed, for a
piecewise smooth conductivity σC . Denoting by Σ the interface between regions
with different conductivities, the variational problem reads:

(3.18)

A ∈ Ŵ :
∫
Ω
µ−1 rotA · rotw

+
∫
ΩC

µ−1
∗,Cσ

−2
C div(σCAC) div(σCwC)

+
∫
Ω iωσA ·w +

∫
ΩI
µ−1
∗,I divAI divwI

=
∫
Ω

Je · w ∀ w ∈ Ŵ ,

where
Ŵ := {w ∈W0 |w · n = 0 on Γ ∪ Σ} ⊂W00 .

Since σ is piecewise smooth, the strong matching condition on Γ ∪ Σ gives
Ŵ ⊂ H(div; Ω) (and therefore in finite element numerical approximations one
can use standard nodal elements).

However, the fact that (3.18) is a correct formulation of the eddy-current
problem is questionable. In fact, even in the simplest case of a smooth con-
ductivity σC , so that Σ = ∅, in order to show that the distributional gradient
of µ−1

∗,Cσ
−2
C div(σCAC) belongs to (L2(ΩC))3 one cannot repeat the arguments

above, as the gradient of the test function ϕ defined in (3.16) does not satisfies

gradϕI ·nI = 0 on Γ, therefore it does not belong to Ŵ . Similary, imposing on
ϕI this Neumann condition instead of the Dirichlet one gives that the gradient
of ϕ is an L2-function only locally in ΩC and ΩI , and not globally in Ω.

The proofs reported in [7], Appendix 1 and Appendix 2, suffer of this
inaccuracy.

4. Well-posed formulations based on the Lorenz gauge

In this Section, following the approach proposed in Fernandes [13], we
present some “genuine” Lorenz gauged formulations for which we are able to
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prove well-posedness. Let us recall that, concerning the smoothness of the con-
ductivity, we are only assuming σC ∈ L∞(ΩC).

We start from the unique solution (H,EC) ∈ H(rot; Ω)×H(rot; ΩC) of the
eddy-current problem (1.1). The vector potential formulation we are considering
is based on the conditions rotA = µH in Ω and iωAC +gradVC = −EC in ΩC .
Gauging is just the determination of additional conditions in such a way that
the vector potential A and the scalar potential VC become unique.

(i) First case: AC · nC = 0 on Γ (condition (2.5))

Solve {−∆VC + iωµ∗,CσCVC = divEC in ΩC

gradVC · nC = −EC · nC on Γ ,

to be intended in the following weak sense

(4.1)
VC ∈ H1(ΩC) :

∫
ΩC

gradVC · gradψC + iω
∫
ΩC

µ∗,CσCVCψC
= −

∫
ΩC

EC · gradψC ∀ ψC ∈ H1(ΩC) ,

then

(4.2)






rotAC = µCHC in ΩC

divAC = −µ∗,CσCVC in ΩC

AC · nC = 0 on Γ ,

and finally

(4.3)






rotAI = µIHI in ΩI

divAI = 0 in ΩI

AI × nI = −AC × nC on Γ

AI · n = 0 on ∂Ω .

As it is well-known, each one of the three problems above has a unique so-
lution, provided that the following compatibility conditions are satisfied: for
problem (4.2), div(µCHC) = 0 in ΩC and

∫
ΩC

µ∗,CσCVC = 0; for problem

(4.3), div(µIHI) = 0 in ΩI and − divτ (AC × nC) = µIHI · nI on Γ.
Indeed, taking ψC = 1 in (4.1) we know that VC satisfies

∫
ΩC

µ∗,CσCVC = 0;

moreover, from (1.1) we have div(µCHC) = 0 in ΩC , div(µIHI) = 0 in ΩI , and
µIHI · nI = −µCHC · nC on Γ, hence from (4.2)1 µIHI · nI = − rotAC · nC =
− divτ (AC × nC) on Γ.

Now, we can easily check that:
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Proposition 4.1. There exists a unique solution (A, VC) ∈ H(rot; Ω) ×
H1(ΩC) to the problem

(4.4)






rotA = µH in Ω

iωAC + gradVC = −EC in ΩC

divAC + µ∗,CσCVC = 0 in ΩC

divAI = 0 in ΩI

AC · nC = 0 on Γ

AI · n = 0 on ∂Ω .

and it is given by the solution to (4.1)–(4.3).

Proof. Concerning existence, the only point to verify is that (4.4)2 is
satisfied. Setting QC := iωAC + gradVC + EC , from the Faraday equation
(1.1)1, (4.1) and (4.2) we have rotQC = 0 in ΩC , divQC = 0 in ΩC and
QC · nC = 0 on Γ, therefore QC = 0 in ΩC .

Let us prove uniqueness. For H = 0 and EC = 0, from (4.4)2, (4.4)3 and
(4.4)5 we have that VC is the solution of

{−∆VC + iωµ∗,CσCVC = 0 in ΩC

gradVC · nC = 0 on Γ ,

therefore VC = 0 in ΩC . Then (4.4)2 gives AC = 0, and finally, from (4.4)1,
(4.4)4 and (4.4)6, we have rotAI = 0, divAI = 0, AI · n = 0 on ∂Ω, and
moreover AI × nI = −AC × nC = 0 on Γ, hence AI = 0.

As noted in Section 2, conditions (4.4)3–(4.4)6 are in this case the gauge
conditions for the (AC , VC)–AI formulation.

We also have an existence and uniqueness result for the correspondent mod-
ified version of (2.9) (in Section 2 we called it (2.9)*):

Theorem 4.2. There exists a unique solution (A, VC) ∈ H(rot; Ω) ×
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H1(ΩC) to the Lorenz gauged problem

(4.5)






rot(µ−1
C rotAC) + iωσCAC + σC gradVC = Je,C in ΩC

rot(µ−1
I rotAI) = Je,I in ΩI

divAC + µ∗,CσCVC = 0 in ΩC

divAI = 0 in ΩI

AI · n = 0 on ∂Ω

(µ−1
I rotAI) × n = 0 on ∂Ω

AC · nC = 0 on Γ

AI × nI + AC × nC = 0 on Γ

(µ−1
I rotAI) × nI + (µ−1

C rotAC) × nC = 0 on Γ

∫
ΩC

µ∗,CσCVC = 0 .

and it is given by the solution to (4.4).

Proof. The proof of the existence is trivial, and follows from the arguments
already presented in Section 2.

Concerning uniqueness, assume that Je = 0 in Ω, multiply (4.5)1 by AC ,
(4.5)2 by AI , integrate by parts and add the results: from the interface condi-
tions (4.5)8 and (4.5)9 one obtains

∫

Ω

µ−1 rotA · rotA + iω

∫

ΩC

σC |AC |
2 +

∫

ΩC

σC gradVC · AC = 0 .

From the interface conditions (4.5)9 one also has

rot(µ−1
C rotAC) · nC = − rot(µ−1

I rotAI) · nI = 0 on Γ ;

thus, multiplying (4.5)1 by (iω)−1 gradVC and integrating by parts, one finds

∫

ΩC

σCAC · gradVC + (iω)−1

∫

ΩC

σC |gradV C |
2 = 0 .

Therefore, Re(
∫
ΩC

σCAC · gradVC) = 0 = Re(
∫
ΩC

σC gradVC · AC), hence∫
Ω µ

−1 rotA · rotA = 0 and consequently rotA = 0 in Ω. In addition, inserting
this result in (4.5)1, we obtain iωσCAC + σC gradVC = 0 in ΩC .

We have thus found a solution (A, VC) of problem (4.4) with vanishing
right hand sides, hence the uniqueness result for problem (4.4) gives A = 0 in
Ω and VC = 0 in ΩC .
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Remark 4.3. Let us point out the final result: the unique solution (A, VC)
to (4.5), which is determined by the given current density Je and not by the
fields H and EC , as it was the case for the solution to the problems (4.1)–
(4.4), is furnishing the solution to the eddy-current problem (1.1), through the
definitions H := µ−1 rotA and EC := −iωAC − gradVC .

(ii) Second case: VC = 0 on Γ (condition (2.6))

The only modification in (4.1)–(4.3) concerns the gauge condition on Γ: this
time, instead of AC ·nC = 0 on Γ, we set VC = 0 on Γ. This has as a consequence
that the Neumann condition for the scalar potential VC must be replaced by
the homogeneous Dirichlet condition VC = 0 (namely, in (4.1) the variational
space H1(ΩC) must be replaced by H1

0 (ΩC)), and moreover (4.2)3 has to be
substituted by AC × nC = −(iω)−1EC × nC . The existence and uniqueness of
a solution VC , AC and AI to the problems (4.1), (4.2) and (4.3) thus modified
is again well-known, provided that the following compatibility conditions are
satisfied: for problem (4.2), div(µCHC) = 0 in ΩC and −(iω)−1 divτ (EC ×
nC) = µCHC ·nC on Γ; for problem (4.3), div(µIHI) = 0 in ΩI and − divτ (AC×
nC) = µIHI · nI on Γ.

Remembering the compatibility conditions required and verified in the first
case (i), we see that we have only to check the condition on Γ for problem (4.3):
indeed, we have −(iω)−1 divτ (EC × nC) = −(iω)−1 rotEC · nC = µCHC · nC
on Γ, having used the Faraday equation (1.1)1.

Moreover, we also have

Proposition 4.4. There exists a unique solution (A, VC) ∈ H(rot; Ω) ×
H1(ΩC) to the problem

(4.6)






rotA = µH in Ω

iωAC + gradVC = −EC in ΩC

divAC + µ∗,CσCVC = 0 in ΩC

divAI = 0 in ΩI

VC = 0 on Γ

AI · n = 0 on ∂Ω .

and it is given by the solution to the modified problem (4.1)–(4.3), with the

Neumann condition for VC replaced by the homogeneous Dirichlet VC = 0 on Γ
and (4.2)3 replaced by AC × nC = −(iω)−1EC × nC on Γ.

Proof. Proceeding as in the proof of Proposition 4.1, for the existence
of the solution we only need to show that (4.6)2 is satisfied. Setting again
QC := iωAC + gradVC + EC , from the Faraday equation (1.1)1, (4.1) with
H1(ΩC) replaced by H1

0 (ΩC), (4.2)1 and (4.2)2 we have rotQC = 0 in ΩC and
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divQC = 0 in ΩC . Moreover, the modified interface conditions VC = 0 and
[AC + (iω)−1EC ] × nC = 0 on Γ give QC × nC = 0 on Γ, therefore QC = 0 in
ΩC .

To prove the uniqueness it is enough to observe that the solution of

{
−∆VC + iωµ∗,CσCVC = 0 in ΩC

VC = 0 on Γ

satisfies VC = 0 in ΩC . Then the proof follows as in Proposition 4.1.

We also obtain at once an existence and uniqueness result for a Lorenz
gauged problem similar to (4.5), where the only modifications are the substitu-
tion of the interface condition AC · nC = 0 on Γ with VC = 0 on Γ, and the
elimination of the vanishing average condition

∫
ΩC

µ∗,CσCVC = 0 (in the sequel,

this problem will be called (4.5)*; in Section 2 it has been denoted by (2.9)**).

Remark 4.5. It can be noted that, if divJe = 0 in Ω and σC = const,
then either for the first case (i) or for the second case (ii) the solution VC to
(4.1) satisfies VC = 0 in ΩC and therefore divAC = 0 in ΩC . In fact, we have
0 = div(σCEC)+ divJe,C = σC divEC in ΩC , and 0 = σCEC ·nC +Je,C ·nC +
Je,I · nI = σCEC · nC on Γ.

Indeed, the vector potential A turns out to be the solution to (3.11) (case
(i)) or (3.12) (case (ii)).

(iii) Third case: AC · nC + AI · nI = 0 on Γ (condition (2.7))

This time we assume that H and E (and not only EC) are the solution to
the eddy-current problem, in particular we assume that the Faraday equation
rotE + iωµH = 0 is satisfied in the whole domain Ω (the existence of such a
solution is proved, for instance, in Alonso Rodŕıguez, Fernandes and Valli [3]).

Solve

(4.7)






−∆V + iωµ∗σV = divE in Ω

∂V

∂n
= −E · n on ∂Ω

∫
ΩC

µ∗,CσCVC = 0 ,

to be intended in the weak sense made precise in Proposition 4.6, then

(4.8)






rotA = µH in Ω

divA = −µ∗σV in Ω

A · n = 0 on ∂Ω

(note that this implicitly says that AC · nC + AI · nI = 0 on Γ).
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The solvability conditions for (4.8) are div(µH) = 0 in Ω, as usual following
from the Faraday equation, and

∫
Ω
µ∗σV = 0, namely,

∫
ΩC

µ∗,CσCVC = 0, that

is satisfied due to (4.7)3.
Hence, it remains to show that (4.7) has a unique solution.

Proposition 4.6. There exists a unique solution of the Neumann problem

(4.7).

Proof. We start showing that the following variational problem has a
unique solution: find V ∈ H1(Ω) with

∫
ΩC

µ∗,CσCVC = 0 such that

(4.9)

∫

Ω

gradV · grad η0 + iω

∫

Ω

µ∗σV η0 = −

∫

Ω

E · grad η0

for all η0 ∈ H1(Ω) with
∫
ΩC

µ∗,CσCη0,C = 0.

The existence and uniqueness of the solution to (4.9) is a consequence of
the Lax–Milgram lemma, as it is easy to prove that the Poincaré inequality
holds for functions η0 ∈ H1(Ω) with

∫
ΩC

µ∗,CσCη0,C = 0 (one can adapt, for

instance, the proof reported in Dautray and Lions [12], Volume 2, Chapter IV,
Section 7, Proposition 2, where the function η0 is assumed to satisfy

∫
Ω η0 = 0

instead of
∫
ΩC

µ∗,CσCη0,C = 0). Taking now η ∈ H1(Ω), we set

η0 := η −

(∫

ΩC

µ∗,CσC

)−1 (∫

ΩC

µ∗,CσCηC

)
;

clearly, η0 can be used as a test function in (4.9). Therefore we have

∫

Ω

gradV · grad η + iω

∫

Ω

µ∗σV η = −

∫

Ω

E · gradη ,

as gradη0 = grad η and
∫
Ω µ∗σV =

∫
ΩC

µ∗,CσCVC = 0.

Integrating by parts, one gets easily that div(gradV + E) = iωµ∗σV in Ω
and (gradV + E) · n = 0 on ∂Ω, namely, V is the solution to (4.7).

We can thus obtain:

Proposition 4.7. There exists a unique solution (A, V ) ∈ H(rot; Ω) ×
H1(Ω) to the problem

(4.10)






rotA = µH in Ω

iωA + gradV = −E in Ω

divA + µ∗σV = 0 in Ω

A · n = 0 on ∂Ω .

and it is given by the solution to (4.7)–(4.8).
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Proof. For the existence of the solution we only need to show that (4.10)2
is satisfied. Setting Q := iωA + gradV + E, from the Faraday equation, (4.7)
and (4.8) we have rotQ = 0 in Ω, divQ = 0 in Ω and Q ·n = 0 on ∂Ω, therefore
Q = 0 in Ω.

To prove the uniqueness it is enough to observe that, putting H = 0 and
E = 0 in (4.10), V satisfies






−∆V + iωµ∗σV = 0 in Ω

∂V

∂n
= 0 on ∂Ω

∫
ΩC

µ∗,CσCVC = 0 ,

hence V = 0 in Ω and A = 0 in Ω.

We finally have

Theorem 4.8. There exists a solution (A, V ) ∈ H(rot; Ω)×H1(Ω) to the

Lorenz gauged problem

(4.11)






rot(µ−1 rotA) + iωσA + σ gradV = Je in Ω

divA + µ∗σV = 0 in Ω

A · n = 0 on ∂Ω

(µ−1 rotA) × n = 0 on ∂Ω

∫
ΩC

µ∗,CσCVC = 0 .

and it is given by the solution to (4.10). Moreover, A and VC := V|ΩC
are

uniquely determined, hence they are the unique solution to the Lorenz gauged

problem (2.9).

Proof. The proof of the existence follows as in Theorem 4.2. For unique-
ness, as proved there, we find rotA = 0 in Ω and iωAC + gradVC = 0 in ΩC .
The irrotationality condition guarantees the existence of a function W ∈ H1(Ω)
such that iωA = − gradW in Ω; moreover, it is not restrictive to suppose that
WC = VC in ΩC , namely, σW = σV in Ω. Hence we have

−∆W = iω divA = −iωµ∗σV = −iωµ∗σW in Ω

and gradW · n = −iωA · n = 0 on ∂Ω, therefore W is a solution to the homo-
geneous Neumann problem (4.7). We thus have W = 0 in Ω, and consequently
A = 0 in Ω and VC = 0 in ΩC .

Remark 4.9. It is worthy to note that, in all cases (i), (ii) and (iii), after
having solved the Lorenz gauged problems (4.5) or (4.5)* or (2.9), hence having
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determined A and VC from the data of the problem, we are also in a condition
to find the electric field EI in ΩI . In fact, first we solve the mixed problem






− div(εI gradψI) = iω div(εIAI) in ΩI

ψI = VC on Γ

εI gradψI · n = −iωεIAI · n on ∂Ω

(here εI is the dielectric coefficient, a symmetric matrix, uniformly positive
definite in ΩI , with entries in L∞(ΩI); moreover, let us underline again that
the problem has to be intended in the weak sense).

Then, setting EI := −iωAI−gradψI in ΩI and taking into account (2.1), it
is easily checked that rotEI = −iωµIHI in ΩI , div(εIEI) = 0 in ΩI , EI ×nI =
−iωAI × nI − gradψI × nI = iωAC × nC + gradVC × nC = −EC × nC on Γ
and εIEI ·n = 0 on ∂Ω, therefore EI is the electric field in ΩI (see, e.g., Alonso
Rodŕıguez, Fernandes and Valli [3]).

It can be noted that, for the case (iii), one has ψI = V|ΩI
, where V is the

solution to (4.10).

5. Variational formulations and positiveness

In order to devise a finite element approximation scheme, we are now in-
terested in deriving the variational formulation of all the three Lorenz gauged
vector potential problems we have proposed: namely, (2.9), (4.5) and (4.5)*
(i.e., the one obtained from (4.5) by replacing AC · nC = 0 on Γ with VC = 0
on Γ and eliminating the vanishing average condition

∫
ΩC

µ∗,CσCVC = 0).
We will see that, among the formulations we are going to present and

analyze, there is that proposed by Bryant, Emson, Fernandes and Trowbridge
[8] and Bossavit [7]. However, let us underline that here we are only assuming
that the conductivity σC is a scalar L∞(ΩC)-function, uniformly positive in ΩC .

Starting from (2.9), the usual integration by parts and the boundary and
interface conditions (2.9)6, (2.9)9 give

∫
Ω µ

−1 rotA · rotw +
∫
ΩC

(iωσCAC · wC + σC gradVC · wC)

=
∫
Ω Je ·w ∀ w ∈ H(rot,Ω) .

Let us introduce the space

Q := {w ∈ H(rot,Ω) | divwC ∈ L2(ΩC), divwI ∈ L2(ΩI)} ,

endowed with the norm

||w||2Q :=

∫

Ω

(|w|2 + | rotw|2) +

∫

ΩC

| divwC |
2 +

∫

ΩI

| divwI |
2 .
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Due to the Lorenz gauge, one can add three other terms, finding

(5.1)

∫
Ω
µ−1 rotA · rotw

+
∫
ΩC

µ−1
∗,C divAC divwC +

∫
ΩI
µ−1
∗,I divAI divwI

+
∫
ΩC

(iωσCAC ·wC + σC gradVC ·wC + σCVC divwC)

=
∫
Ω

Je · w ∀ w ∈ Q .

On the other hand, using the Lorenz gauge equation in (3.5) and multiplying
by iω−1 yields

(5.2)

∫
ΩC

(iω−1σC gradVC − σCAC) · gradψC
+

∫
ΩC

σC(divAC + µ∗,CσCVC)ψC

= iω−1
(∫

ΩC
Je,C · gradψC +

∫
Γ Je,I · nI ψC

)
∀ ψC ∈ H1(ΩC) .

Note that the same procedure can be followed also when starting from (4.5)
or (4.5)*: we always obtain the problem (5.1)–(5.2).

Let us introduce the variational spaces

(5.3) Q♯ :=






{w ∈ Q |w · n = 0 on ∂Ω,wC · nC = 0 on Γ}
(case (i), problem (4.5))

{w ∈ Q |w · n = 0 on ∂Ω} (case (ii), problem (4.5)*)

{w ∈ Q |w · n = 0 on ∂Ω,wC · nC + wI · nI = 0 on Γ}
= H(rot; Ω) ∩H0(div; Ω) (case (iii), problem (2.9))

(5.4) H♯ :=






{ψC ∈ H1(ΩC) |
∫
ΩC

µ∗,CσCψC = 0}

= H1
∗ (ΩC) (case (i), problem (4.5))

{ψC ∈ H1(ΩC) |ψC = 0 on Γ}
= H1

0 (ΩC) (case (ii), problem (4.5)*)

{ψC ∈ H1(ΩC) |
∫
ΩC

µ∗,CσCψC = 0}

= H1
∗ (ΩC) (case (iii), problem (2.9)) ,

the sesquilinear form

(5.5)

B((A, VC), (w, ψC)) :=
∫
Ω
µ−1 rotA · rotw +

∫
ΩI
µ−1
∗,I divAI divwI

+
∫
ΩC

µ−1
∗,C(divAC + µ∗,CσCVC)(divwC + µ∗,CσCψC)

+iω−1
∫
ΩC

σC(iωAC + gradVC)(−iωwC + gradψC)

=
∫
Ω
µ−1 rotA · rotw
+

∫
ΩI
µ−1
∗,I divAI divwI +

∫
ΩC

µ−1
∗,C divAC divwC

+
∫
ΩC

(iωσCAC · wC + σC gradVC · wC + σCVC divwC)

+
∫
ΩC

(iω−1σC gradVC · gradψC + σ2
Cµ∗,CVC ψC)

+
∫
ΩC

(σC divAC ψC − σCAC · gradψC)
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defined (and continuous) in Q×H1(ΩC), and the anti-linear functional

F(w, ψC) :=

∫

Ω

Je · w + iω−1

(∫

ΩC

Je,C · gradψC +

∫

Γ

Je,I · nI ψC

)

defined (and continuous) in L2(Ω) ×H1(ΩC).

Theorem 5.1. There exists a unique solution to the variational problem

(5.6)
(A, VC) ∈ Q♯ ×H♯ : B((A, VC), (w, ψC)) = F(w, ψC)

∀ (w, ψC) ∈ Q♯ ×H♯ .

Proof. For case (i), the existence is an easy consequence of (4.5), while for
case (ii) comes from (4.5)*, and for case (iii) from (2.9).

Uniqueness follows from the fact that, in all cases, if B((A, VC), (w, ψC)) =
0 for each (w, ψC) ∈ Q♯ ×H♯, choosing w = A, ψC = VC one finds

∫
Ω µ

−1 rotA · rotA +
∫
ΩI
µ−1
∗,I | divAI |2 +

∫
ΩC

µ−1
∗,C | divAC + µ∗,CσCVC |2

+iω−1
∫
ΩC

σC |iωAC + gradVC |2 = 0 .

Therefore, for case (i) one has obtained a solution to the homogeneous problem
(4.5), while for case (ii) of the homogeneous problem (4.5)*, and for case (iii) of
the homogeneous problem (2.9). Since all these problems have a unique solution
(see Theorem 4.2, or the sentences after Proposition 4.4, or Theorem 4.8), the
thesis follows.

For numerical approximation, it is useful to check that the sesquilinear form
B(·, ·) is coercive in Q♯×H♯. We will succeed in proving this result for the spaces
Q♯ and H♯ associated to the cases (i) and (iii) in (5.3)–(5.4) (namely, not for
the interface condition ψC = 0 on Γ).

In the sequel, therefore, we are always considering the spaces Q♯ and H♯

associated to the cases (i) and (iii) in (5.3)–(5.4). The following Poincaré-type
inequalities will be useful:

(5.7)

∫
Ω | rotw|2 +

∫
ΩI

| divwI |2 +
∫
ΩC

| divwC |2

≥ κ1

∫
Ω
|w|2 ∀ w ∈ Q♯

(5.8)

∫

ΩC

| gradψC |
2 ≥ κ2

∫

ΩC

|ψC |
2 ∀ ψC ∈ H♯ .

For case (iii) in (5.3)–(5.4), the proof of (5.7) can be found, for instance, in
Girault and Raviart [14], Chapter I, Lemma 3.6. Instead, for case (i) in (5.3)–
(5.4), the integral

∫
ΩC

|wC |2 can be estimated by means of the same lemma

applied to ΩC , whereas the integral
∫
ΩI

|wI |2 can be estimated as follows:

∫
ΩI

|wI |2 ≤ c1

( ∫
ΩI

| rotwI |2 +
∫
ΩI

| divwI |2 + ||wI × nI ||2YΓ

)

= c1

( ∫
ΩI

| rotwI |2 +
∫
ΩI

| divwI |2 + ||wC × nC ||2YΓ

)

≤ c2

( ∫
ΩI

| rotwI |2 +
∫
ΩI

| divwI |2 +
∫
ΩC

|wC |2 +
∫
ΩC

| rotwC |2
)
,
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where YΓ is the space of tangential traces on Γ of H(rot; ΩI) and H(rot; ΩC)
(see, e.g., Alonso and Valli [1, 2]).

On the other hand, for both cases (i) and (iii) in (5.3)–(5.4), estimate (5.8)
follows easily by adapting the proof presented, for instance, in Dautray and
Lions [12], Volume 2, Chapter IV, Section 7, Proposition 2, where the function
ψC is assumed to satisfy

∫
ΩC

ψC = 0 instead of
∫
ΩC

µ∗,CσCψC = 0.

Proposition 5.2. Let us consider cases (i) and (iii) in (5.3)–(5.4). The

sesquilinear form B(·, ·) is coercive in Q♯×H♯, provided that the maximum value

µC∗,2 of the scalar function µ∗,C is small enough.

Proof. Since z + z = 2 Re z and z − z = 2 i Im z, we have

B((w, ψC), (w, ψC)) =
∫
Ω µ

−1 rotw · rotw
+

∫
ΩI
µ−1
∗,I | divwI |2 +

∫
ΩC

µ−1
∗,C | divwC |2

+
∫
ΩC

(iωσC |wC |2 + iω−1σC | gradψC |2 + σ2
Cµ∗,C |ψC |2)

+2 Re
∫
ΩC

σCψC divwC + 2 i Im
∫
ΩC

σC gradψC ·wC .

On the other hand,

∣∣∣∣2 Re

∫

ΩC

σCψC divwC

∣∣∣∣ ≤ σmax

(
α

∫

ΩC

|ψC |
2 + α−1

∫

ΩC

| divwC |
2

)

and
∣∣∣∣2 Im

∫

ΩC

σC gradψC ·wC

∣∣∣∣ ≤ σmax

(
β

∫

ΩC

| gradψC |
2 + β−1

∫

ΩC

|wC |
2

)
,

for each possible choice of the numbers α > 0 and β > 0.
Let us denote by µmax the maximum eigenvalue of µ(x) in Ω, and by σmin

and σmax the minimum and the maximum of σC(x) in ΩC , respectively. Re-
member also that the auxiliary function µ∗ is assumed to satisfy 0 < µC∗,1 ≤

µ∗,C(x) ≤ µC∗,2 in ΩC and 0 < µI∗,1 ≤ µ∗,I(x) ≤ µI∗,2 in ΩI . Here, we also

assume that µC∗,2 ≤ µI∗,2. Using the inequalities a2 + b2 ≥ a2 + γb2 for each
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γ ∈ (0, 1] and (c+ d)2 ≥ c2/2 − d2, we have

|B((w, ψC), (w, ψC))|2

= (ReB((w, ψC), (w, ψC)))2 + (ImB((w, ψC), (w, ψC)))2

≥ (ReB((w, ψC), (w, ψC)))2 + γ(ImB((w, ψC), (w, ψC)))2

=
( ∫

Ω µ
−1 rotw · rotw +

∫
ΩI
µ−1
∗,I | divwI |2 +

∫
ΩC

µ−1
∗,C | divwC |2

+
∫
ΩC

σ2
Cµ∗,C |ψC |2 + 2 Re

∫
ΩC

σCψC divwC

)2

+γ
(
ω−1

∫
ΩC

(ω2σC |wC |2 + σC | gradψC |2)

+2 Im
∫
ΩC

σC gradψC ·wC

)2

≥ 1
8max(µ2

max
,(µI

∗,2
)2)

(∫
Ω
| rotw|2 +

∫
ΩI

| divwI |2 +
∫
ΩC

| divwC |2
)2

+ 1
8(µC

∗,2
)2

(∫
ΩC

| divwC |
2
)2

+ γ
σ2

min

2ω2

(∫
ΩC

| gradψC |
2
)2

−2σ2
maxα

2
(∫

ΩC
|ψC |2

)2

− 2σ2
maxα

−2
(∫

ΩC
| divwC |2

)2

−2γσ2
maxβ

2
(∫

ΩC
| gradψC |2

)2

− 2γσ2
maxβ

−2
(∫

ΩC
|wC |2

)2

,

having split the term
∫
ΩC

µ−1
∗,C | divwC |2 as (1

2 + 1
2 )

∫
ΩC

µ−1
∗,C | divwC |2, and hav-

ing dropped the non-negative terms
∫
ΩC

σ2
Cµ∗,C |ψC |2 and

∫
ΩC

ω2σC |wC |2.
The negative term in gradψC can be controlled by choosing β small enough

(here, and in the sequel, this means: with respect to a certain combination of
the data of the problem, µC∗,2 excluded, that can be explicitly computed). Then
the negative term in wC can be controlled by using (5.7) and taking γ small
enough. Further, the negative term in ψC can be controlled by using (5.8) and
taking α small enough. Finally, the negative term in divwC can be controlled
by taking µC∗,2 small enough.

Remark 5.3. We note that all the results presented in this Section still
hold if, as in Bryant, Emson, Fernandes and Trowbridge [8] and Bossavit [7],
the sign in front of the integral at the second line of (5.2) is the minus sign.
With that choice, changing the sign to the whole equation (5.2) and choosing
w = A, ψC = VC , it turns out that the off-diagonal terms in system (5.1)–(5.2)
are one the complex conjugate of the other. Instead, with the choice of the plus
sign, presented above, one has renounced to this symmetry property, but has
gained positivity.

When choosing the minus sign, due to the lack of positivity the proof of
uniqueness in Theorem 5.1 needs some additional efforts, as firstly one has to
prove that the gauge divAC + µ∗,CσCVC = 0 is satisfied, and this can be done
by choosing a suitable couple of test functions in (5.6) (this time, not simply
w = A, ψC = VC). Also the proof of Proposition 5.2 needs some modifications,
but the result still holds unchanged.

It is also worthy to note that, when σC is piecewise constant, the case
(iii) with the minus sign essentially reduces to the formulation proposed in [8],
which, therefore, is well-posed.
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6. Numerical approximation

Assume that Ω, ΩC and ΩI are Lipschitz polyhedra, and that TI,h and
TC,h are two regular families of triangulations of ΩI and ΩC , respectively. For
the sake of simplicity, we suppose that each element K of TI,h and TC,h is a
tetrahedron. We also assume that these triangulations match on Γ, so that they
furnish a family of triangulations Th of Ω.

Numerical approximation of problem (5.6) via conforming finite elements
can be easily devised. In fact, it is enough to choose suitable finite element
subspaces W r

h ⊂ Q♯ and Xs
C,h ⊂ H♯, and rewrite (5.6) in W r

h × Xs
C,h. The

uniqueness of the discrete solution follows as in Theorem 5.1 (this is not the
case, however, for the modified version described in Remark 5.3); its existence
is then a consequence of the uniqueness result.

Moreover, in the preceding Section we have proved that, when considering
the gauge conditions described in case (i) and (iii) in Section 4 and assuming
that the maximum value µC∗,2 of the scalar function µ∗,C is small enough, the
sesquilinear form B(·, ·) is continuous and coercive (and this result is true also
for the modified version described in Remark 5.3). Therefore, the convergence
analysis is easily performed.

Let us focus only on case (iii) in (5.3)–(5.4), the case (i) being similar (but
a little bit more difficult to implement, due to the constraint wC ·nC = 0 on Γ).
Denoting by Pr, r ≥ 1, the space of polynomials of degree less than or equal to
r, we choose the discrete spaces of nodal finite elements

W r
h := {wh ∈ (C0(Ω))3 | wh|K ∈ (Pr)

3 ∀ K ∈ Th , wh · n = 0 on ∂Ω} ,

and

Xs
C,h :=

{
ψC,h ∈ C0(ΩC) | ψC,h|K ∈ Ps ∀ K ∈ TC,h ,

∫
ΩC

µ∗,CσCψC,h = 0
}

(for implementation, one could replace the average condition
∫
ΩC

µ∗,CσCψC,h =

0 with ψC,h(x0) = 0 for a point x0 ∈ ΩC).
Via Céa lemma for each wh ∈W r

h and ψC,h ∈ Xs
C,h we have

( ∫
Ω
(|A − Ah|2 + | rot(A − Ah)|2 + | div(A − Ah)|2)

+
∫
ΩC

(|VC − VC,h|
2 + | grad(VC − VC,h)|

2)
)1/2

≤ C0

κ0

( ∫
Ω
(|A − vh|2 + | rot(A − vh)|2 + | div(A − vh)|2)

+
∫
ΩC

(|VC − φC,h|
2 + | grad(VC − φC,h)|

2)
)1/2

,

where κ0 > 0 and C0 > 0 are the coerciveness and the continuity constant of
B(·, ·), respectively. Therefore, provided that Ω has not reentrant corners or
edges and the solutions A and VC are regular enough, by means of well-known
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interpolation results we find the error estimate

(6.1)

( ∫
Ω(|A − Ah|2 + | rot(A − Ah)|2 + | div(A − Ah)|2)

+
∫
ΩC

(|VC − VC,h|2 + | grad(VC − VC,h)|2)
)1/2

≤ Chmin(r,s) .

Remark 6.1. It is worthy to note that the regularity of A is not assured if
Ω has reentrant corners or edges (see Costabel and Dauge [10]). More important,
in that case the space H1

τ (Ω) := (H1(Ω))3∩H0(div; Ω) turns out to be a proper
closed subspace of H(rot; Ω)∩H0(div; Ω) (the two spaces coincide if and only if
Ω is convex). Hence the discrete solution Ah ∈ W r

h ⊂ H1
τ (Ω) cannot approach

an exact solution A ∈ H(rot; Ω)∩H0(div; Ω) with A 6∈ H1
τ (Ω), and convergence

is lost.
However, the assumption that Ω is convex is not a severe restriction, since in

most of the real-life applications ∂Ω arises from a somehow arbitrary truncation
of the whole space. Hence, reentrant corners and edges of Ω can be easily
avoided.

We note instead that in case (i), owing to the condition AC · nC = 0 on Γ,
also reentrant corners and edges of ΩC disrupt the convergence. This is a real
limitation, as non-convex conductors may occur.

Finally, even if Ω has not reentrant corners, the speed of convergence in
(6.1) anyway depends on the smoothness of A and VC : it should also be noted
that the smoothness of A cannot be high, as, due to the particular structure of
the Lorenz gauge, divA has a jump on Γ.

Remark 6.2. In order to reduce the number of degrees of freedom, the
magnetic scalar potential ψ such that H = − gradψ is very often used (see, e.g.,
[8]) in the more external part of ΩI . In that case, the condition A · n = 0 is
imposed on the interface between the regions ΩA ⊃ ΩC and Ωψ ⊂ ΩI , where
A and ψ are used, respectively. If this is done for case (iii), the region whose
convexity is required, in order to assure convergence, is then ΩA, which, again,
can be rather arbitrarily chosen.

Remark 6.3. In Jin [15], Chapter 5, Section 5.7.4, it is underlined that
a finite element approximation based on a variational form in which the terms∫
ΩI
µ−1
∗,I divAI divwI +

∫
ΩC

µ−1
∗,C divAC divwC are present can be not efficient

if the coefficients µ∗,C and µ∗,I have jumps. In this respect, it should be noted
that in (5.5) µ∗,C and µ∗,I are auxiliary functions, and are not required to be
equal to the physical magnetic permeability µ. Therefore, jumps can be avoided,
choosing µ∗ as smooth as one likes.

7. Conclusions

Which type of conclusion can we reach from all this? The Lorenz gauge
divAC + µ∗,CσCVC = 0 in ΩC has been originally proposed with the aim of
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decoupling the equation for A from the equation for VC , substituting σC gradVC
with −σC grad(µ−1

∗,Cσ
−1
C divAC) (in particular, an additional interesting feature

of this approach is that, for a constant σC and a constant µ∗,C = µC , the latter
term simplifies to −µ−1

C graddivAC , which, added to µ−1
C rot rotAC , gives at

last −µ−1
C ∆AC).

However, this decoupling is difficult to handle for a non-constant conductiv-
ity σC , as one arrives to a problem which looks hard to solve. To overcome this
difficulty, a modified Lorenz gauge (that reduces to the usual one for σC = const)
has been proposed by Bossavit [7]: in this case, decoupling is achieved, and the
resulting problem seems easier to tackle. However in Section 3 we show that,
under the very common assumption divJe = 0 in Ω, this approach leads indeed
to div(σCAC) = 0 and VC = 0 in ΩC , therefore to a (decoupled) modified vec-
tor potential formulation in ΩC (essentially, an electric field formulation). For a
constant (or smooth) conductivity σC this can be an interesting approach: how-
ever, not a Lorenz gauged formulation. On the other hand, for a non-smooth
σC the implementation suffers the need of imposing the matching condition
[σCwC ·nC ] = 0, which is not straightforward on the interelements where σC is
jumping. Moreover, the convergence of nodal finite element approximations is
assured only for very particular geometrical configurations of the interfaces.

The results in Section 4 show that “genuine” Lorenz gauged formulations
can indeed be introduced, even for a general non-smooth conductivity, but no
decoupling of A and VC is now present (it was already shown in Bryant, Emson,
Fernandes and Trowbridge [8], [9] that, in spite of the original purpose of the
Lorenz gauge formulations, A and VC are coupled in the most appealing versions
of them). In particular, we present three approaches, different one from the
other for the interface gauge condition on Γ (cases (i), (ii) and (iii)).

Concerning nodal finite element numerical approximation, we have seen
that, for cases (i) and (iii), a quasi-optimal error estimate holds, provided the
parameter µ∗,C is small enough. Since for case (i) the implementation requires
that the finite elements satisfy the interface constraint wC ·nC = 0 on Γ, which
instead is not present in case (iii), and convergence is assured only if the con-
ductor ΩC is convex, we can conclude that, among the three we have proposed,
case (iii) is the most suitable Lorenz gauged vector potential formulation to use.

Finally, though the smallness assumption on µ∗,C is not particularly restric-
tive, because µ∗ is not the physical magnetic permeability µ, but an auxiliary

function that we have inserted into the problem, we conclude pointing out that
it could be interesting to find an approximation via nodal finite elements which
is at the same time convergent and free of any restriction on the parameters of
the problem.

Acknowledgement. The authors wish to thank Ana Alonso Rodŕıguez
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