Let γ, τ : [a, b] → Rk+1 be a couple of Lipschitz maps such that γ’ = | γ’| τ almost everywhere in [a, b]. Then γ ([a, b]) is a C2-rectifiable set, namely it may be covered by countably many curves of class C2 embedded in Rk+1. As a consequence, projecting the rectifiable carrier of a one-dimensional generalized Gauss graph provides a C2-rectifiable set.

A result about C2-rectifiability of one-dimensional rectifiable sets: application to a class of one-dimensional integral currents / Delladio, Silvano. - ELETTRONICO. - (2004), pp. 1-13.

A result about C2-rectifiability of one-dimensional rectifiable sets: application to a class of one-dimensional integral currents

Delladio, Silvano
2004-01-01

Abstract

Let γ, τ : [a, b] → Rk+1 be a couple of Lipschitz maps such that γ’ = | γ’| τ almost everywhere in [a, b]. Then γ ([a, b]) is a C2-rectifiable set, namely it may be covered by countably many curves of class C2 embedded in Rk+1. As a consequence, projecting the rectifiable carrier of a one-dimensional generalized Gauss graph provides a C2-rectifiable set.
2004
Trento
Università degli Studi di Trento - Dipartimento di Matematica
A result about C2-rectifiability of one-dimensional rectifiable sets: application to a class of one-dimensional integral currents / Delladio, Silvano. - ELETTRONICO. - (2004), pp. 1-13.
Delladio, Silvano
File in questo prodotto:
File Dimensione Formato  
UTM666.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 185.15 kB
Formato Adobe PDF
185.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358081
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact