
A RESULT ABOUT
C2-RECTIFIABILITY OF ONE-DIMENSIONAL RECTIFIABLE SETS.
APPLICATION TO A CLASS OF ONE-DIMENSIONAL INTEGRAL

CURRENTS.

SILVANO DELLADIO

Abstract. Let γ, τ : [a, b] → Rk+1 be a couple of Lipschitz maps such that γ′ = |γ′|τ almost
everywhere in [a, b]. Then γ([a, b]) is a C2-rectifiable set, namely it may be covered by countably
many curves of class C2 embedded in Rk+1. As a consequence, projecting the rectifiable carrier of
a one-dimensional generalized Gauss graph provides a C2-rectifiable set.

1. Introduction

Let f ∈ C1(Rn), F ∈ C1(Rn,Rn) and consider the closed set

K := {x ∈ Rn |∇f(x) = F (x)} .

Observe that if x0 is an internal point of K then f is of class C2 within a small ball centered at x0.
Thus, in particular, the graph of f |K◦ is C2-rectifiable. Recall that a subset of a Euclidean space
is said to be C2-rectifiable if Hn-almost all of it may be covered by countably many n-dimensional
submanifolds of class C2, [1]. As an obvious consequence, the graph of f |K has to be C2-rectifiable
provided

Ln(K\K◦) = 0.(1.1)

Quite surprisingly, this fact does not necessarily occur without assuming condition (1.1). For the
convenience of the reader, we shall now present a counterexample and retrace some steps from [1,
Appendix], where such a counterexample is given. Let n = 1 and

F (x) := 0, f(x) :=
∫ x

0
dist(t, E)1/2 dt (x ∈ R)(1.2)

where E is a certain Cantor-like set of positive measure. Then K = E (thus K\K◦ = K has
positive measure) and the graph of f |K = f |E is not C2-rectifiable, as it follows at once from the
following result:

For every ϕ ∈ C2(R), the closed set

Cϕ :=
{
ϕ = f |E

}
=
{
x ∈ E | ϕ(x) = f(x)

}
does not contain points of density. Thus L1(Cϕ) = 0.
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In order to verify such a statement, assume by absurd that a point x0 of density of Cϕ exists.
Then an easy argument shows that ϕ′(x0) = 0, compare [7, Proof of Lemma 3.1], hence a positive
constant c has to exist such that

|f(x)− f(x0)| = |ϕ(x)− ϕ(x0)− ϕ′(x0)(x− x0)| < c|x− x0|2

for all x ∈ Cϕ, with |x − x0| ≤ 1. If β := 1 and Fx0 denotes the set which corresponds to the
constant c according to [1, Proposition 4.5], it follows that

Fx0 ∩ [x0 − 1, x0 + 1] ⊂ [x0 − 1, x0 + 1]\Cϕ

by (a) in [1, Proposition 4.5]. As a consequence Fx0 has density zero at x0, which contradicts (b)
in [1, Proposition 4.5].

By invoking [5, Remark 4.1], one can immediately get convinced that the arguments above may
be restated in the context of countably n-rectifiable sets G generalizing the notion of Gauss map
graph, namely such that

G ⊂ Rn+1 × Sn

and

ν ⊥ TP (πG)(1.3)

is satisfied at a.e. (P, ν) ∈ G such that d(π|G)P exists and has rank n, where π denotes the
projection on the first component, i.e. π(P, ν) := P . In particular, the set πG has not necessarily
to be C2-rectifiable and the function f defined in (1.2) provides again an easy counterexample.
Indeed, the set

G :=
{(

(x, f(x)); (0, 1)
)
|x ∈ E

}
⊂ R2 × S1(1.4)

is obviously 1-rectifiable and condition (1.3) is satisfied, in that TP (πG) coincides with the x-axis
at every P ∈ πG. But πG is just the graph of f |E which, as we have recalled above, is not
C2-rectifiable.

Incredibly enough, for quite a long time after [1] appeared, the people working on this subject
continued to try to prove that the image by π of a set G as above had to be countably n-rectifiable
of class C2. Such a (false) statement seemed actually to be proved by Fu in the paper [9], which was
followed by [5] where a simpler proof was presented. Subsequently, a mistake was found in the Fu’s
argument, see [6] and its successive generalization [7] (see also [10] for further details). Eventually,
in a recent private comunication, Fu brought the counterexample in [1] to our attention.

As for the bug consequently affecting the proof in [5]), one can easily verify that it is necessarily
due to the preliminary result [1, Lemma 3.6]. Indeed such a result erroneously asserts that a certain
number a, involved in its statement, depends on only the Lipschitz constant A of the tangent spaces
field and more precisely that

a(A) =
1

2(8A + 1)

e.g. for the set R defined in (1.4), one has a(A) = a(0) = 1/2. Actually, if this were true, the simple
Proposition 4.6 in [5] would imply (via the Whitney extension Theorem, invoked in [5, Theorem
3.1]) the C2-rectifiability of πG. On the other hand, the falseness of [5, Proposition 4.6] can also be
proved by a direct computation based on the example exhibited in [6, §4.2]. In fact, if f ∈ C1(R) is
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the function considered in such an example, [5, Proposition 4.6] would yield the existence of λ > 0
such that

f(εj) < λε2
j , εj := 2−j

provided j is big enough. But this inequality contradicts [6, Proposition 4.3], according to which
one has

lim
j

f(εj)
ε2
j

= lim
j

f2,εj (1) = +∞.

The main achievement of the present work is the following result:

Theorem 1.1. Let be given a couple of Lipschitz maps

γ, τ : [a, b] → Rk+1

satisfying the equality

γ′ = |γ′|τ(1.5)

almost everywhere in [a, b]. Then γ([a, b]) is a C2-rectifiable set.

As a consequence of Theorem 1.1, we finally get a sufficient condition for the C2-rectifiability of
πG, where G is a one-dimensional set of the type described above. More precisely, in Theorem 5.1
we state that πG is C2-rectifiable, provided G carries a one-dimensional generalized Gauss graph
in Rk+1, [2, 4].

From our point of view, the context of generalized Gauss graphs is the one where the fallacious
arguments discussed above emerged and where we expect to find interesting applications to geo-
metric variational problems. Theorem 5.1 represents the first step of a long term program. Future
work will naturally be devoted to extend such a result in two different directions, corresponding
respectively to higher dimension and higher order of rectifiability.

2. Preliminaries I (general dimension)

Let n, k be a couple of positive integers and denote by G(n + k, n) the Grassmannian manifold of
all n-dimensional linear subspaces of Rn+k. If V is a linear subspace of Rn+k then its orthogonal
complement is indicated with V ⊥, while PV is the orthogonal projection mapping Rn+k onto V . If
V,W ∈ G(n + k, n), then L(V,W ) is the vector space of linear operators from V to W . The graph
of L ∈ L(V,W ) is denoted by GL.

Definition 2.1. Given an integer i ≥ 1, a real number δ > 0 and V ∈ G(n + k, n), let us define
the set

Γi(V, δ) :=
{
Q ∈ Rn+k : |Q− PV Q| ≥ δ|PV Q|i

}
.

Remark 2.1. The space V ⊥ is a subset of Γi(V, δ), for all δ and i.

The following simple result characterizes the n-dimensional subspaces not intersecting (except for
the origin!) the cone Γ1(V, δ).
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Proposition 2.1. Let W ∈ G(n + k, n). Then

W ∩ Γ1(V, δ) = {0}(2.1)

if and only if there exists L ∈ L(V, V ⊥) such that

W = GL, ‖L‖ < δ.

Proof. Assume that (2.1) holds. Let {w1, . . . , wn} be a basis of W and set

vi := PV wi (i = 1, . . . , n).

Let us prove that the vi are linearly independent (hence a basis of V ). Indeed, if ci (i = 1, . . . , n)
are real constants such that

n∑
i=1

civi = 0 i.e. PV

(
n∑

i=1

ciwi

)
= 0,

then, by recalling Remark 2.1, we find
n∑

i=1

ciwi ∈ V ⊥ ∩W ⊂ Γ1(V, δ) ∩W = {0}.

It follows that ci = 0 (for i = 1, . . . , n), hence {v1, . . . , vn} is a basis of V . Then W is just the
graph of the linear operator L : V → V ⊥ such that

L(vi) = wi − PV wi = wi − vi (i = 1, . . . , n).

In order to prove that ‖L‖ < δ, consider v ∈ V \{0} and observe that, since v + Lv ∈ W\{0} and
(2.1) holds, then

v + Lv 6∈ Γ1(V, δ).

It follows that
|v + Lv − PV (v + Lv)| < δ|PV (v + Lv)|

i.e.
|Lv| < δ|v|.

Vice versa, suppose that W coincides with the graph of a linear operator L : V → V ⊥ such that
‖L‖ < δ. Then consider Q ∈ W\{0}, i.e. Q = v + Lv for some v ∈ V \{0}. One has

|Q− PV Q| = |Lv| ≤ ‖L‖ |v| < δ|v| = δ|PV Q|

namely Q 6∈ Γ1(V, δ). Hence W ∩ Γ1(V, δ) = {0}. �

Now we shall prove the following expected result.

Proposition 2.2. Let λ, µ be positive real numbers and V0, V ∈ G(n + k, n) satisfy

V ∩ Γ1(V0, λ) = {0}.

Then there exists r̄ = r̄(λ, µ, V0, V ) positive, continuous in its arguments and such that

Γ1(V0, λ) ∩Br̄(0) ⊂ Γ2(V, µ).
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Proof. Let e ∈ Sn−1(V ), ε ∈ Sk−1(V ⊥) and define

e0 := PV0e, ε0 := PV0ε, e⊥ := e− e0 = PV ⊥0
e, ε⊥ := ε− ε0 = PV ⊥0

ε

A := λ2|e0|2 − |e⊥|2, B := λ e0 · ε0 − e⊥ · ε⊥, C := λ2|ε0|2 − |ε⊥|2.
Then one has

se + tε ∈ Γ1(V0, λ)
if and only if

|se⊥ + tε⊥| ≥ λ|se0 + tε0|
i.e.

As2 + 2Bst + Ct2 ≤ 0.

Since A > 0, in that e 6∈ Γ1(V0, λ), this inequality is equivalent to

(As + Bt)2 − (B2 −AC)t2 ≤ 0.

It follows that

(i) if B2 −AC < 0 then Γ1(V0, λ) ∩ [e, ε] = {0};
(ii) if B2 −AC ≥ 0 then Γ1(V0, λ) ∩ [e, ε] is the cone included in [e, ε], bounded by the lines

As +
(
B + (B2 −AC)1/2

)
t = 0, As +

(
B − (B2 −AC)1/2

)
t = 0

and not containing e (indeed e ∈ V and V ∩ Γ1(V0, λ) = {0}).

On the other hand, one has

Γ2(V, µ) ∩ [e, ε] =
{
se + tε

∣∣ |t| ≥ µs2
}

hence the set
I(e, ε) :=

{
r ≥ 0

∣∣Γ1(V0, λ) ∩ [e, ε] ∩Br(0) ⊂ Γ2(V, µ)
}

is a compact interval, with
r(e, ε) := max I(e, ε) > 0

for all (e, ε) belonging to

K :=
{
(e, ε) ∈ Sn−1(V )× Sk−1(V ⊥)

∣∣B2 −AC ≥ 0
}

.

Since r : K → R is continuous and K is compact, there exists (ē, ε̄) ∈ K such that

r̄ := r(ē, ε̄) = min
K

r > 0.

Then
Γ1(V0, λ) ∩ [e, ε] ∩Br̄(0) ⊂ Γ2(V, µ)

for all (e, ε) ∈ K. Now the conclusion follows by observing that

Γ1(V0, λ) =
⋃

(e,ε)∈Sn−1(V )×Sk−1(V ⊥)

Γ1(V0, λ) ∩ [e, ε]

�

Corollary 2.1. Let λ, λ̄, µ be positive real numbers with λ̄ > λ and let V0 ∈ G(n + k, n). Then
there exists ρ = ρ(λ, λ̄, µ, V0) > 0 such that

Γ1(V0, λ̄) ∩Bρ(0) ⊂ Γ2(V, µ)

for all V ∈ G(n + k, n) such that V ∩ Γ1(V0, λ) = {0}.
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Proof. The image of the compact ball

B :=
{
L ∈ L(V0, V

⊥
0 )
∣∣ ‖L‖ ≤ λ

}
through the continuous map

G : L(V0, V
⊥
0 ) → G(n + k, n), L 7→ GL

has to be compact. Then the function

G(B) 3 V 7→ r̄(λ̄, µ, V0, V )

has a minimizer, by Poposition 2.2. If ρ = ρ(λ, λ̄, µ, V0) denotes the corresponding minimum value,
then one obviously has

Γ1(V0, λ̄) ∩Bρ(0) ⊂ Γ2(GL, µ)
for all L ∈ B. Finally, Proposition 2.1 completes the proof. �

3. Preliminaries II (dimension one)

In this section we will deal with the special case n = 1. We begin by stating a very simple
preliminary result.

Lemma 3.1. Let A be a closed subset of R and

f, d : A → R

be a couple of bounded functions such that

|f(y)− f(x)− d(x)(y − x)| ≤ C|y − x|2(3.1)

for all x, y ∈ A, where C is a constant. Then there exists F ∈ C1,1(R) such that F |A = f .

Proof. The inequality (3.1) yields

|(d(x)− d(y)) (y − x)| = |d(x)(y − x) + f(x)− f(y) + d(y)(x− y) + f(y)− f(x)|
≤ |d(x)(y − x) + f(x)− f(y)| + |d(y)(x− y) + f(y)− f(x)|
≤ 2C|y − x|2

i.e.
|d(x)− d(y)| ≤ 2C|y − x|

for all x, y ∈ A. The conclusion follows at once from the Whitney extension Theorem [14, §2.3]. �

Actually the result we will need to invoke below is the following immediate corollary of Lemma 3.1.

Proposition 3.1. Let f ∈ C1(R) be such that

|f(y)− f(x)− f ′(x)(y − x)| ≤ C|y − x|2(3.2)

for all x, y in a bounded set M ⊂ R, where C is a constant. Then there exists F ∈ C1,1(R) such
that F |M = f |M .

Proof. By continuity, the inequality (3.2) holds for all x, y ∈ M . Then apply Lemma 3.1 with
A := M and d := f ′|M . �
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Now we are ready to prove the following theorem.

Theorem 3.1. Let E be a H1-measurable subset of Rk+1. Assume that there exist

V0 ∈ G(k + 1, 1), λ, µ, r > 0

and a field of lines
E → G(k + 1, 1), a 7→ Wa

such that
Wa ∩ Γ1(V0, λ) = {0}, E ∩ (a + Γ2(Wa, µ)◦) ∩Br(a) = ∅

for all a ∈ E. Then E is C2-rectifiable.

Proof. Let λ̄ > λ. Then, by Corollary 2.1, there exists a positive real number ρ = ρ(λ, λ̄, µ, V0)
such that

Γ1(V0, λ̄) ∩Bρ(0) ⊂ Γ2(Wa, µ)
for all a ∈ E. Recalling the assumed condition, we get

E ∩
(
a + Γ1(V0, λ̄)◦

)
∩Bρ̄(a) ⊂ E ∩ (a + Γ2(Wa, µ)◦) ∩Bρ̄(a) = ∅(3.3)

for all a ∈ E, where

ρ̄ := min{ρ, r}.

It follows that E is a C1-rectifiable set, by [11, Lemma 15.13]. Then, without affecting the generality
of our argument, we may assume that there exist a function

f ∈ C1(V0,Rk) ∼= C1(R,Rk)

and a measurable set
M ⊂ V0

∼= R

such that
E = Gf |M

and M (hence E) has density one at all of its points. Since E is a countable union of measurable
sets of diameter less than ρ̄, we can also suppose that

E ⊂ Bρ̄(a) ⊂ Br(a)

for all a ∈ E. Hence

E ∩
(
a + Γ1(V0, λ̄)◦

)
= E ∩ (a + Γ2(Wa, µ)◦) = ∅(3.4)

for all a ∈ E, by (3.3).

Now, let us consider x0, x ∈ M and define

P0 := (x0, f(x0)), P := (x, f(x)), τ := (1, f ′(x0)), τ̂ :=
τ

|τ |
and

∆ := P − (P0 + (x− x0)τ) = (0, f(x)− f(x0)− f ′(x0)(x− x0)).
Observe that one has

|f ′(x0)| < λ < λ̄(3.5)

by assumption and Proposition 2.1.
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From (3.4), we obtain

|∆− (∆ · τ̂)τ̂ | ≤ µ|(P − P0) · τ̂ |2

≤ µ|P − P0|2

= µ(|x− x0|2 + |f(x)− f(x0)|2)
≤ µ(1 + λ̄2)|x− x0|2

i.e.

|∆|2 − |∆ · τ̂ |2 ≤ µ2
(
1 + λ̄2

)2
|x− x0|4.(3.6)

Since

|∆ · τ̂ |2 =
|f(x)− f(x0)− f ′(x0)(x− x0)|2|f ′(x0)|2

1 + |f ′(x0)|2
=

|f ′(x0)|2

1 + |f ′(x0)|2
|∆|2

and recalling (3.5), we find

|∆|2 − |∆ · τ̂ |2 =
|∆|2

1 + |f ′(x0)|2
≥ |∆|2

1 + λ̄2
.

Then (3.6) yields the inequality

|f(x)− f(x0)− f ′(x0)(x− x0)| ≤ µ
(
1 + λ̄2

)3/2
|x− x0|2.

From Proposition 3.1 it follows that there exists F ∈ C1,1(R,Rk) such that

F |M = f |M.

Now the conclusion readily follows from [8, Theorem 3.1.15], according to which F has to coincide
with a map C2(R,Rk) except for a measurable set of arbitrarily small measure. �

4. The proof of Theorem 1.1

First of all, define the set

J :=
{
t ∈ [a, b]

∣∣ γ′(t), τ ′(t) exist, γ′(t) 6= 0
}

.

and observe that
H1 (γ([a, b])\γ(J)) ≤ H1 (γ([a, b]\J)) =

∫
[a,b]\J

|γ′| = 0.

Let ε > 0 be fixed arbitrarily. Then, by the Lusin Theorem, a closed subset Jε of J has to exist
such that

γ′|Jε is continuous and L1(J\Jε) ≤ ε.

If A denotes the Lipschitz constant of the map γ, we obtain

H1 (γ(J)\γ(Jε)) ≤ H1 (γ(J\Jε)) =
∫

J\Jε

|γ′| ≤ Aε.

Now let J∗
ε be the set of points of density of Jε. Since Jε is closed, one has

J∗
ε ⊂ Jε.

Moreover
L1(Jε\J∗

ε ) = 0
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by a well known Lebesgue’s result, hence

H1 (γ(Jε)\γ(J∗
ε )) ≤ H1 (γ(Jε\J∗

ε )) = 0.

Due to the remarks above and by the arbitrariness of ε, we are reduced to prove that

γ(J∗
ε ) is C2-rectifiable.(4.1)

The main step in proving the assertion (4.1) will be to show that if t0 ∈ J∗
ε satisfies

γ′(t0) = |γ′(t0)|τ(t0) (hence |τ(t0)| = 1)(4.2)

then the ratio

R(t0, t) :=

∣∣γ(t)− γ(t0) −
((

γ(t)− γ(t0)
)
· τ(t0)

)
τ(t0)

∣∣∣∣(γ(t)− γ(t0)
)
· τ(t0)

∣∣2
exists and converges as t → t0. Finally, we will complete the proof by an easy argument based on
Theorem 3.1.

Consider t0 ∈ J∗
ε satisfying (4.2). We can also assume

γ(t0) = 0

without affecting the generality of our argument. Observe that, for a.e. t ∈ J , one has

0 =
τ(t) · τ(t)− τ(t0) · τ(t0)

t− t0
= (τ(t) + τ(t0)) ·

τ(t)− τ(t0)
t− t0

.

Letting t tend to t0, at which J has density one, it follows that

τ(t0) · τ ′(t0) = 0.(4.3)

For s ∈ J , define

ρ1(s) := |γ′(s)| − |γ′(t0)|, ρ2(s) :=
τ(s)− τ(t0)

s− t0
− τ ′(t0)

which satisfy

lim
s→t0
s∈Jε

ρ1(s) = 0, lim
s→t0
s∈J

ρ2(s) = 0.(4.4)

For t ∈ [a, b] one has

γ(t) =
∫
[t0,t]

γ′ =
∫
[t0,t]

|γ′|τ =
∫
[t0,t]∩Jε

|γ′|τ +
∫
[t0,t]\Jε

|γ′|τ(4.5)

by assumption. The first integral in the right hand side of (4.5) can be written as follows

(4.6)
∫
[t0,t]∩Jε

|γ′|τ =
∫
[t0,t]∩Jε

(
|γ′(t0)|+ρ1(s)

) (
τ(t0)+(s− t0)τ ′(t0)+(s− t0)ρ2(s)

)
ds

=
(
|γ′(t0)|(t− t0)+σ1(t)

)
τ(t0)+

( |γ′(t0)|
2

(t− t0)2+σ2(t)
)

τ ′(t0)+σ3(t)

where

σ1(t) := −|γ′(t0)| (t− t0 − |Jε ∩ [t0, t]|) +
∫
[t0,t]∩Jε

ρ1

σ2(t) := −|γ′(t0)|
(

(t− t0)2

2
−
∫
[t0,t]∩Jε

s− t0 ds

)
+
∫
[t0,t]∩Jε

(s− t0)ρ1(s) ds

= −|γ′(t0)|
∫
[t0,t]\Jε

s− t0 ds +
∫
[t0,t]∩Jε

(s− t0)ρ1(s) ds
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and
σ3(t) := |γ′(t0)|

∫
[t0,t]∩Jε

(s− t0)ρ2(s) ds +
∫
[t0,t]∩Jε

(s− t0)ρ1(s)ρ2(s) ds.

Observe that

σ1(t) = o(t− t0), σ2(t) = o(t− t0)2, σ3(t) = o(t− t0)2(4.7)

by (4.4) and recalling that t0 is a point of density of Jε.

As for the second integral in the right hand side of (4.5), notice that

σ4(t) :=
∫
[t0,t]\Jε

|γ′|τ = o(t− t0)(4.8)

by the assumptions. It satisfies

σ4(t)− (σ4(t) · τ(t0)) τ(t0) =
∫
[t0,t]\Jε

|γ′(s)| (τ(s)− (τ(s) · τ(t0))τ(t0)) .(4.9)

Since |τ(t0)| = 1, one has

τ(s)− (τ(s) · τ(t0))τ(t0) = τ(s)− τ(t0) + (1− τ(s) · τ(t0))τ(t0)

= τ(s)− τ(t0) + ((τ(t0)− τ(s)) · τ(t0)) τ(t0)

hence
|τ(s)− (τ(s) · τ(t0))τ(t0)| ≤ 2B|s− t0|

where B is the Lipschitz constant of τ . Then (4.9) yields

|σ4(t)− (σ4(t) · τ(t0)) τ(t0)| ≤ 2AB

∫
[t0,t]\Jε

|s− t0| ds = o(t− t0)2.(4.10)

Now we are ready to compute the limit of R(t0, t), as t → t0. To this aim, observe that the formulas
(4.3), (4.5), (4.6), (4.7), (4.8) and (4.10) obtained above imply

γ(t) · τ(t0) = |γ′(t0)| (t− t0) + o(t− t0)

and

γ(t)− (γ(t) · τ(t0))τ(t0) =
( |γ′(t0)|

2
(t− t0)2 + σ2(t)

)
τ ′(t0) + σ3(t) + σ4(t) +

− ((σ3(t) + σ4(t)) · τ(t0)) τ(t0)

=
|γ′(t0)|

2
(t− t0)2τ ′(t0) + σ2(t)τ ′(t0) + σ3(t)− (σ3(t) · τ(t0)) τ(t0) +

+ σ4(t)− (σ4(t) · τ(t0)) τ(t0)

=
|γ′(t0)|

2
(t− t0)2τ ′(t0) + o(t− t0)2.

Thus R(t0, t) exists for t in a neighborhood of t0 and one has

R(t0, t) =
|γ′(t0)|

2 (t− t0)2|τ ′(t0)|+ o(t− t0)2

|γ′(t0)|2(t− t0)2 + o(t− t0)2
→ |τ ′(t0)|

2|γ′(t0)|
< +∞(4.11)

as t → t0.

In order to complete the proof of the statement (4.1), let us consider (for i ∈ N) the set Σ(i) of all
t0 ∈ J∗

ε such that:
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• one has γ′(t0) = |γ′(t0)|τ(t0);
• the estimates

|τ(t)− τ(t0)| < 1, R(t0, t) ≤ i

hold whenever |t− t0| ≤ (b− a)/i (note: the first one is verified provided |t− t0| < 1/B).

Observe that
Σ(i) ⊂ Σ(i+1)(⊂ J∗

ε )

for all i ∈ N. Moreover

∪i∈NΣ(i) = {t0 ∈ J∗
ε | γ′(t0) = |γ′(t0)|τ(t0)

}
by (4.11), hence

L1
(
J∗

ε \ ∪i∈N Σ(i)
)

= 0.(4.12)

Then, given i ∈ N, consider the uniform partition of [a, b]

a
(i)
j := a +

(b− a)j
i

(j = 0, 1, . . . , i)

and define
Σ(i)

j := Σ(i) ∩ [a(i)
j , a

(i)
j+1] (j = 0, . . . , i− 1).

Then the C2-rectifiability of

E := γ(Σ(i)
j )

follows from Theorem 3.1, where

V0 is the line generated by τ(t̄0), with t̄0 ∈ Σ(i)
j fixed arbitrarily

Wγ(t0) is the tangent line to γ at γ(t0), t0 ∈ Σ(i)
j (note: it is generated by τ(t0))

λ :=
√

3
2

, µ := i

and r is positive and chosen arbitrarily. By recalling (4.12), we finally end the proof of the assertion
(4.1).

5. Application to one-dimensional generalized Gauss graphs

In this section it is proved the result about the carrier of a one-dimensional generalized Gauss graph
announced in the Introduction. Let us recall from [2, 4] that a “one-dimensional generalized Gauss
graph (in Rk+1)” is an integral current (see [8, 12, 13])

T ∈ I1(Rk+1 ×Rk+1)

such that:

(i) The carrier G of T is equivalent in measure to a subset of Rk+1 × Sk, i.e.

H1(G\(Rk+1 × Sk)
)

= 0;
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(ii) If ϕ denotes the following 1-form in Rk+1 ×Rk+1

(x, y) 7→
k+1∑
j=1

yjdxj

and ∗ is the usual Hodge star operator in Rk+1, then one has:

• T (∗ϕ ω) = 0 for all smooth (k − 1)-forms with compact support in Rk+1 ×Rk+1;

• T (gϕ) ≥ 0 for all nonnegative continuous functions with compact support in Rk+1 ×
Rk+1.

Incidentally, we can observe that a one-dimensional generalized Gauss graph T can have only finitely
many indecomposable components. Indeed, if Σ is one of such components, then the normal mass
of Σ is at least 2 or 2π according to whether ∂Σ 6= 0 or ∂Σ = 0, see [8, 4.2.25] and [3, Theorem
4.1].

We are finally ready to state and prove the result.

Theorem 5.1. Let T = [[G, η, θ]] be a one-dimensional generalized Gauss graph and π indicate the
orthogonal projection

Rk+1 ×Rk+1 → Rk+1, (x, y) 7→ x.

Then the set πG is C2-rectifiable.

Proof. Without loss of generality, we can restrict our attention to the case when T is indecompo-
sable. Then, by [8, 4.2.25], there exists an injective Lipschitz map

Γ : [0,M(T )] → Rk+1 × Sk

such that Γ#[0,M(T )] = T . In particular G is parametrized by Γ and one has

Γ′ = η ◦ Γ

a.e. in [0,M(T )]. If
γ : [0,M(T )] → Rk+1, τ : [0,M(T )] → Sk

denote the components of Γ in Rk+1 and Sk respectively, then we easily obtain the equality

γ′ = |γ′| τ
a.e. in [0,M(T )], compare [4, Proposition 4.1]. Now the conclusion follows from Theorem 1.1. �
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