The paper deals with the first systematic study of the spaces of regular and ratinal maps between arbitrary algebraic varieties over a real closed field R. We find conditions under which these spaces are reduced to the space of Zariski locally constant maps, we investigate the finiteness properties of the subspaces of dominating regular and rational maps and, when R is the field of real numbers, we study the topology of the space of regular maps. Our results show that the mentioned map spaces are usually" very small. The realization of such a general study has been possible thanks to the introduction of two new classes of real algebraic invariants: the curve genera and the toric genera."

Elementary structure of morphism space between real algebraic varieties / Ghiloni, Riccardo. - ELETTRONICO. - (2004), pp. 1-54.

Elementary structure of morphism space between real algebraic varieties

Ghiloni, Riccardo
2004-01-01

Abstract

The paper deals with the first systematic study of the spaces of regular and ratinal maps between arbitrary algebraic varieties over a real closed field R. We find conditions under which these spaces are reduced to the space of Zariski locally constant maps, we investigate the finiteness properties of the subspaces of dominating regular and rational maps and, when R is the field of real numbers, we study the topology of the space of regular maps. Our results show that the mentioned map spaces are usually" very small. The realization of such a general study has been possible thanks to the introduction of two new classes of real algebraic invariants: the curve genera and the toric genera."
2004
Trento
Università degli Studi di Trento - Dipartimento di Matematica
Elementary structure of morphism space between real algebraic varieties / Ghiloni, Riccardo. - ELETTRONICO. - (2004), pp. 1-54.
Ghiloni, Riccardo
File in questo prodotto:
File Dimensione Formato  
UTM664.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 707.2 kB
Formato Adobe PDF
707.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/358080
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact