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Abstract

The paper deals with the first systematic study of the spaces of
regular and ratinal maps between arbitrary algebraic varieties over a
real closed field R. We find conditions under which these spaces are
reduced to the space of Zariski locally constant maps, we investigate
the finiteness properties of the subspaces of dominating regular and
rational maps and, when R is the field of real numbers, we study the
topology of the space of regular maps. Our results show that the
mentioned map spaces are “usually” very small. The realization of
such a general study has been possible thanks to the introduction of
two new classes of real algebraic invariants: the curve genera and the
toric genera.

Introduction

A significant problem in Real Algebraic Geometry is to understand when the
setR(M, N) of all regular maps between a compact affine real algebraic mani-
fold M and an affine real algebraic manifold N is dense in the corresponding
set C∞(M, N) of all C∞ maps, equipped with the C∞ topology. Until now,
the space R(M,N) has been studied only in this direction. This is due to
the great importance of the approximation techniques in Geometry.

Let us recall some of the main aspects of this topic.
Differentiable, analytic and algebraic structures can coexist on a mani-

fold. The possibility of equipping a manifold with structures of increasing
richness implies the existence of more tools for the study of the manifold itself.
For example, we recall the Morse theory, the Morse–Sard theorem and the
Milnor–Thom inequalities. Similar considerations may be repeated when we
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study maps between manifolds. For example, in problems of iteration of maps
from a manifold into itself, high differentiability is sometimes an important
hypothesis. Let us consider the categories of Ck differentiable, real analytic
and affine real Nash manifolds. The availability of the Implicit Function
Theorem ensures the existence of tubular neighborhoods for any manifolds.
Combining the Stone–Weierstrass theorem (or some of its variants) with the
notion of tubular neighborhood, we obtain fundamental approximation re-
sults for manifolds and maps between them (see [60] and [52]). In the real
algebraic setting, the Implicit Function Theorem is not true: for example,
one can prove that the unique compact affine real algebraic manifold, which
has an algebraic tubular neighborhood, is the single point (see [30]). For
these reasons, the problem of making smooth objects algebraic turns out to
be very difficult. These kinds of questions have played and continue to play
a crucial role in the development of Real Algebraic Geometry. We remind
the reader of Tognoli’s celebrated theorem [59], which is the starting point
of the systematic study of real algebraic varieties, and of subsequent efforts
to characterize the topology of such varieties in the singular case (see [1],
[26], [50]).

At the moment, the nature of the arduous question concerning the density
of R(M, N) in C∞(M,N) is well–understood essentially only when the tar-
get space N is equal to a real, complex or quaternionic grassmannian Gn,k(F)
(where F is R, C orH) equipped with its natural real algebraic structure. This
follows from the deep connections existing between the notion of strongly al-
gebraic vector bundle over M introduced in [3], the problem of approximating
C∞ maps between M and a grassmannian Gn,k(F) by regular maps, the al-
gebraic and topological K–theories of M and the algebraic properties of the
cohomology of M . These connections have been extensively studied in the
following papers: [5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 21, 24, 25, 37, 41, 42, 44, 46].
For an excellent survey of a part of results contained in these papers, we refer
the reader to chapter 12 and sections 13.3 and 13.5 of [4]. Recently, interest-
ing algebraic approximation theorems has been obtained for C∞ maps with
values in rational real algebraic surfaces or, more generally, in rational real
algebraic manifolds (see [19, 20, 38, 43, 45, 48]). Further results concern-
ing homological and homotopic properties of regular maps can be found in
[7, 15, 16, 22, 23, 30, 32, 53] and in section 13.4 of [4].

The purpose of this paper is to investigate the structure of the spaces of
regular and rational maps between arbitrary algebraic varieties over a real
closed field R. Let X and Y be varieties of this kind. Indicate by R(X, Y )
(resp. Ratio(X, Y )) the set of all regular (resp. rational) maps between
X and Y . We study R(X, Y ) and Ratio(X, Y ) by addressing the following
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three questions:

Question 1: find conditions under which R(X, Y ) (resp. Ratio(X, Y ))
is reduced to the set of Zariski locally constant maps,

Question 2: study the finiteness properties of the subset of R(X, Y )
(resp. Ratio(X, Y )) formed by dominating maps,

Question 3: when R = R, study the topology of R(X,Y ).

The algebraic varieties we consider here are understood in the sense of
Serre [54] (in particular, are reduced), are not assumed to be irreducible,
affine or nonsingular, but, in order to avoid trivial situations, they are as-
sumed to have positive dimension.

The study of the spaces of regular and rational maps between such general
real algebraic varieties is based on two new classes of algebraic invariants:
the curve genera and the toric genera. It turns out that, from elementary
relations between the curve genera of the source space and the toric genera
of the target space, we are able to infer satisfactory solutions to the previous
three questions. These solutions reveal that the mentioned map spaces are
“usually” very small. Furthermore, if the target space is affine, then, up to a
change of its algebraic structure which preserves its natural affine real Nash
structure, the regular and rational map spaces are always reduced to the set
of Zariski locally constant maps.

0. Summary and sketch of the main theorems

The paper is subdivided into four sections. In section 1, we introduce and
study several integer–valued algebraic invariants on positive dimensional al-
gebraic varieties over a real closed field. Among them, the most important are
the curve and toric genera (biregular invariants) and the rational curve and
rational toric genera (birational invariants). These genera extend the clas-
sical notion of genus of an affine irreducible real algebraic curve. In section
2, we present the main theorems. We organize these results into three sub-
sections, each one addressing one of the preceding questions. The theorems
of subsection 2.1 are followed by their proofs. The proofs of the theorems
contained in subsections 2.2 and 2.3 are given in sections 3 and 4 respectively.
The results of section 1 are used in such proofs.

Let us present some results of subsection 2.1 and some particular cases
of results contained in subsections 2.2 and 2.3 in a way that the reader may
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be immediately aware of their nature.
Fix a real closed field R. Let X be an algebraic variety over R of positive

dimension. Indicate by pc(X), Pc(X), pt(X) and Pt(X), respectively, the
curve genus, the rational curve genus, the toric genus and the rational toric
genus of X. It holds: 0 ≤ pt(X) ≤ Pt(X) ≤ pc(X) ≤ Pc(X). Suppose X

affine. A regular map ϕ : X̃ −→ X between an affine algebraic variety over R
and X is said to be a weak change of the algebraic structure of X if it sends
the singular locus of X̃ into the singular locus of X and, equipping X and
X̃ with their natural affine real Nash structures, ϕ is a Nash isomorphism.

The following lemma is basic. It says that the new genera are Nash
flexible.

Lemma. If X is affine, then there is a weak change ϕ : X̃ −→ X of its
algebraic structure such that pt(X̃) is arbitrarily large.

Total algebraic obstructions. Let Y be an algebraic variety over R
of positive dimension.

Theorem A. The following assertions are verified:
a) If pc(X) < pt(Y ), then every regular map between X and Y is Zariski

locally constant, i.e., it is constant on each irreducible component of X.
b) If Pc(X) < pt(Y ), then every rational map between X and Y is Zariski

locally constant, i.e., it is represented by a Zariski locally constant map.

As a consequence of the previous lemma and Theorem A, we obtain:

Theorem B. Suppose Y affine. Then, there is a weak change ϕ : Ỹ −→
Y of the algebraic structure of Y such that every rational map (and hence

every regular map) between X and Ỹ is Zariski locally constant.

Finiteness of dominating morphism spaces. The following results are
extensions of the classical Hurwitz–de Franchis finiteness theorem to the real
algebraic setting.

Theorem C. Suppose X and Y irreducible. If Pt(Y ) ≥ 2, then the set of
all dominating rational maps between X and Y is finite and there exists an
explicit upper bound for its cardinality in terms of Pc(X) and Pc(Y ) only.

Recall that the ordering structure on R induces a topology on X and Y
called euclidean topology.

Theorem D. Suppose X and Y equipped with the euclidean topology. If
pt(Y ) ≥ 2, then the set of all regular maps between X and Y , which are open
maps also, is finite.
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Topology of regular morphism space. Consider the case R = R.
Suppose that X and Y are affine and equipped with the euclidean topology.
In order to simplify the presentation, we assume that Y does not have any
isolated point also. Equip the set N (X,Y ) of all real Nash maps between X
and Y with the compact–open topology and consider R(X,Y ) as a subspace
of N (X, Y ).

Theorem E. If pt(Y ) ≥ 1, then R(X,Y ) is nowhere dense in N (X,Y ),
i.e., the interior of its closure in N (X,Y ) is void. In other words, R(X, Y )
is topologically small in N (X, Y ).

Remark that the situation is quite different ifR(X,Y ) is replaced byN (X, Y )
and N (X,Y ) is replaced by Cω(X,Y ). In fact, in the remarkable paper [27],
it is proved that, when X is compact, N (X, Y ) is dense in Cω(X, Y ).

Theorem F. If pt(Y ) ≥ 2, then R(X,Y ) can be decomposed into a fi-
nite family {Si}i of locally closed subspaces such that, for each i, there is a
continuous injective map between Si and some Rni. In particular, R(X, Y )
is dimensionally small in N (X, Y ).

Suppose X and Y affine and nonsingular. Consider N (X,Y ) as a sub-
space of C∞(X, Y ) equipped with the weak topology (see chapter 2 of [34])
and R(X,Y ) as a subspace of N (X, Y ). Theorem F can be restated without
changes, while Theorem E assumes the following form.

Theorem E′. Indicate by Ω(X, Y ) the complement of the closure of
R(X, Y ) in N (X, Y ). If pt(Y ) ≥ 1, then the closure of Ω(X,Y ) in N (X, Y )
contains all maps in N (X,Y ) which are not finite–to–one. In particular,
R(X, Y ) is not dense in N (X, Y ).

As a consequence of the latter result, we have that, if R(X, Y ) is dense
in N (X, Y ) (or, equivalently, in C∞(X,Y ) if X is compact), then pt(Y ) = 0.
We underline that the toric genus of each grassmannian Gn,k(F) is zero.
Really, this is true for every rational real algebraic varieties.

In subsection 2.3, we extend the previous topological results in several
ways. For example, the varieties X and Y are not necessarily affine, Y may
have isolated points and R(X, Y ) is also considered as a subspace of the sets
C0(X,Y ) and Cω(X, Y ) (resp. the set Ck(X, Y ) with k ∈ {1, 2, . . .}∪{∞, ω}
when X and Y are nonsingular) equipped with topologies of a very general
type. The results sketched above were presented in our announcement [31].
We remark that several nomenclatures are changed with respect to the ones
used in this announcement. For further results, we refer the reader to [18].
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1 Two new classes of algebraic invariants

1.1 Preliminaries and notations

Let us start recalling some classic notions concerning algebraic varieties over
an arbitrary field (see sections 30–35 of [54]). Let R be a field. Equip each
affine space Rn with the Zariski topology. An algebraic variety over R is a
topological space X equipped with a subsheaf RX of the sheaf of germs of
functions on X with values in R such that there exist a finite open cover
{Vi}i∈I of X and, for each i ∈ I, a map ϕi : Vi −→ Ui where Ui is a locally
closed subset of some Rni with the following two properties:

VAI) For each i ∈ I, ϕi is an isomorphism between Xi equipped with the
restricted sheafRX |Vi

and Ui equipped with its sheaf of germs of regular
functions.

VAII) Denote by ∆ the diagonal of X ×X and, for each i, j ∈ I, replace the
product Rni × Rnj with Rni+nj and consider Ui × Uj as a subspace of
Rni+nj . Then, for each i, j ∈ I, the set (ϕi×ϕj)(∆∩ (Vi×Vj)) is closed
in Ui × Uj.

We indicate such a variety by (X,RX) and, when no confusion is possible,
we write simply X in place of (X,RX). The topology of X is called Zariski
topology. Given a subset S of X, we denote by ZclX(S) the closure of S
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in X. As a topological space, X is noetherian so it can be expressed uniquely
as a finite union of irreducible closed subsets, no one containing another.
They are called irreducible components of X. If the trivial cover {X} of X
and a map ϕ : X −→ U satisfy property VAI (and hence property VAII),
then X is said to be affine. A point x of X is nonsingular of dimension r
if the stalk RX,x of RX at x is a regular local ring of dimension r. The
dimension dim(X) of X is the largest dimension of nonsingular points of X.
We denote by Nonsing(X) the set of all nonsingular points of X of dimension
dim(X) and define Sing(X) := X \ Nonsing(X). If X = Nonsing(X), then
X is called nonsingular. A locally closed subset of X, equipped with the
natural structure of algebraic variety over R induced by X, is called algebraic
subvariety of X. Let (Y,RY ) be an algebraic variety over R. The cartesian
product X × Y equipped with its natural structure of algebraic variety over
R is called product variety of X and Y . Morphisms between X and Y ,
viewed as locally ringed spaces, are called regular maps. Let h : X −→ Y
be a bijective map. If both h and h−1 are regular, then we say that h is a
biregular isomorphism and X and Y are biregularly isomorphic. A rational
map between X and Y is an equivalence class of pairs (U, fU) where U is a
dense open subset of X, fU is a regular map between U and Y and (U, fU) is
equivalent to (V, fV ) if fU = fV on U ∩ V . Let α be a rational map between
X and Y represented by (U, fU). If fU is nonconstant, then α is said to be
nonconstant. Let us give the notion of dominating rational map between
algebraic varieties not necessarily irreducible. This notion permits to define
the composition between rational maps. We say that α is dominating if, for
each irreducible component X ′ of X, there is an irreducible component Y ′

of Y such that ZclY (fU(U ∩X ′)) = Y ′. Suppose α dominating. Let β be a
rational map between Y and an algebraic variety Z over R represented by
(V, gV ). We define the composition map β ◦α as the rational map between X
and Z represented by (f−1

U (V ), gV ◦fU |f−1
U (V )). The map α is called birational

isomorphism if there exists a dominating rational map γ between Y and X
such that γ◦α is represented by the identity map on X and α◦γ is represented
by the identity map on Y . If such a map γ exists, then it is unique, is denoted
by α−1 and X and Y are said to be birationally isomorphic.

In what follows, R is a fixed real closed field and C is its algebraic closure.
We recall that the algebraic extension R[i] = R[x]/(x2 + 1) of R coincides
with C and the ordering structure on R induces on every algebraic variety
over R a topology finer than the Zariski one called euclidean topology. By
real algebraic variety, we mean an algebraic variety over R of positive dimen-
sion. We use both the Zariski topology and the euclidean topology. However,
unless otherwise indicated, all real algebraic varieties are considered equipped
with the euclidean topology. As is usual, the notions of irreducible real alge-
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braic variety and of irreducible components of a real algebraic variety refer
to the Zariski topology. By real algebraic curve, we mean a 1–dimensional
affine irreducible real algebraic variety. Let X be a real algebraic variety. If
an algebraic subvariety D of X is a real algebraic curve, then we say that
D is a real algebraic curve of X. Let Y be a real algebraic variety. We
indicate by R(X, Y ) (resp. Ratio(X,Y )) the set of all regular (resp. ra-
tional) maps between X and Y and, when X is irreducible, by R∗(X, Y )
(resp. Ratio∗(X,Y )) the set of all nonconstant regular (resp. rational) maps
between X and Y .

Let us recall some fact concerning the complexification of real algebraic
curves and of nonconstant rational maps between them. Equip each projec-
tive space Pn(R) (resp. Pn(C)) with its natural structure of algebraic variety
over R (resp. over C). Indicate by σn : Pn(C) −→ Pn(C) the conjugation
map and identify canonically Pn(R) with the fixed point set of σn. Let S be
a subset of Pn(C). Define the real part S(R) of S by S(R) := S∩Pn(R). The
set S is said to be defined over R if it is σn–invariant, i.e, σn(S) = S. Remark
that if S is an algebraic subvariety of Pn(C), then S(R) is an algebraic subva-
riety of Pn(R). Let D be a real algebraic curve and let A be a 1–dimensional
nonsingular irreducible Zariski closed subspace of some Pn(C) defined over R.
If there is a birational isomorphism α between A(R) and D, then the pair
(A,α) (or simply A) is called a projective nonsingular complexification of D.
By normalization, it follows that D always admits a projective nonsingular
complexification. Let E be a real algebraic curve, let γ ∈ Ratio∗(D, E) and
let (DC , α) and (EC , β) be projective nonsingular complexifications of D and
E respectively. It is known that there is a unique regular map γC between
DC and EC such that γC(DC(R)) ⊂ EC(R) and the rational map β−1 ◦ γ ◦α
is represented by the restriction of γC between DC(R) and EC(R). Such
a map γC is called complexification of γ between (DC , α) and (EC , β). Let
f ∈ R∗(D,E) and let γf be the element of Ratio∗(D, E) represented by
(D, f). The complexification of f between (DC , α) and (EC , β) is defined to
be the complexification of γf between (DC , α) and (EC , β) and is indicated
by fC . The uniqueness of the complexification of a nonconstant rational map
between real algebraic curves implies that a projective nonsingular complex-
ification of a real algebraic curve is unique up to biregular isomorphism. In
this way, it is possible to define the genus g(D) of D as the (geometric or
arithmetic) genus of a projective nonsingular complexification of D.

We denote by N the set of all non–negative integers and define N∗ :=
N \ {0}.
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1.2 Curve genera

The following result is the starting point to define the curve genera of a real
algebraic variety. It is a weak version of Corollary 1.3 of [33].

Lemma 1.1 ([33]) Let V be an affine irreducible real algebraic variety. Then,
there exists an integer K ∈ N with the following property: for each x, y ∈ V ,
there is a real algebraic curve D of V containing {x, y} such that g(D) ≤ K.

Let X be a real algebraic variety, let k ∈ N and let x be a point of X. We
denote by CX(k) the set of all real algebraic curves of X with genus k and by
CX(k, x) the set of all elements of CX(k) containing x. We define the curve
star StX(k, x) of X at x with genus k by StX(k, x) := ZclX(

⋃
D∈CX(k,x) D).

Lemma 1.2 Let X be an irreducible real algebraic variety. Then, there
are an integer K ∈ N and a function η : X −→ {0, 1, . . . , K} such that
StX(η(x), x) = X for each x ∈ X.

Proof. Since X is coverable by a finite family of affine Zariski open subsets, it
suffices to consider the case in which X is affine. Fix x ∈ X. By the previous
lemma, we have that

⋃K
k=0 StX(k, x) = X for some K ∈ N so, being X

irreducible, there exists an integer ηx ∈ {0, . . . , K} such that StX(ηx, x) = X.
Defining the function η by η(x) := ηx, we complete the proof. 2

Definition 1.3 Let X be a real algebraic variety. We denote by X∗ the union
of all irreducible components of X of positive dimension and by X0 the union
of all irreducible components of X of dimension zero, i.e., the set X \X∗.

The reader notes that the set of all irreducible components of X∗ coincides
with the set of all irreducible components of X of positive dimension.

Lemma 1.2 ensures that the following definition is consistent.

Definition 1.4 Let X be a real algebraic variety.
First, suppose X irreducible. We define the curve genus pc(X, x) of X at

a point x of X by pc(X, x) := min{k ∈ N | StX(k, x) = X}, the curve genus
pc(X) of X by pc(X) := minx∈X pc(X, x) and, setting Z(X) equal to the set
of all non–void Zariski open subsets of X, define the rational curve genus
Pc(X) of X by Pc(X) := maxZ∈Z(X) minx∈Z pc(X, x).
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If X is reducible and X1, . . . , Xs are the irreducible components of X∗,
then, using the same nomenclature, we define pc(X, x) := max{i |Xi3x} pc(Xi, x)
for each x ∈ X∗, pc(X) := max i∈{1,...,s} pc(Xi) and Pc(X) := max i∈{1,...,s} Pc(Xi).

The function pc,X : X∗ −→ N which sends x into pc(X, x) is called curve
genus function of X.

Remark 1.5 If D is a real algebraic curve, then pc(D) = Pc(D) = g(D) and
pc,D is constantly equal to g(D).

We describe the basic properties of curve genera. First, we need a lemma.

Lemma 1.6 Let D and E be real algebraic curves. If g(D) < g(E), then
every rational map (and hence every regular map) between D and E is con-
stant.

Proof. Suppose Ratio∗(D,E) 6= ∅. Let γ be an element of Ratio∗(D, E)
and let γC : DC −→ EC be a complexification of γ. Since γC ∈ R∗(DC , EC),
by Hurwitz’s formula, it would follow that g(D) = g(DC) ≥ g(EC) = g(E)
which contradicts our assumption. 2

Lemma 1.7 Let X be a real algebraic variety and let U be a Zariski open
subset of X such that U ∩ X∗ 6= ∅. It holds: pc(X) ≤ Pc(X) and pc,U =
pc,X |U∩X∗. Moreover, if X is irreducible, Pc(X) coincides with the minimum
integer k ∈ N such that p−1

c,X(k) is Zariski dense in X.

Proof. Easy consequence of Definition 1.4. 2

Lemma 1.8 Let X and Y be irreducible real algebraic varieties. The follow-
ing assertions are verified.

a) Let f ∈ R(X, Y ). Suppose f dominating, i.e., ZclY (f(X)) = Y . Then,
it holds: pc,X ≥ pc,Y ◦ f and pc(X) ≥ pc(Y ).

b) If there is a dominating rational map between X and Y , then it holds:
Pc(X) ≥ Pc(Y ).

Proof. Let x ∈ X, let y := f(x) and let k := pc(X, x). It holds: Y =
ZclY (f(StX(k, x))) = ZclY (

⋃
D∈CX(k,x) f(D)) = ZclY (

⋃
D∈CX(k,x) f(D)) where

f(D) is the Zariski closure of f(D) in Y . For each D ∈ CX(k, x), f(D) =
{y} or there is an affine Zariski open neighborhood V of y in Y such that
D′ := V ∩ f(D) is a real algebraic curve of Y . In the latter case, Lemma 1.6
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ensures that g(D′) ≤ k. It follows that
⋃k

h=0 StY (h, y) = Y so pc(Y, y) ≤ k
as desired. Let now ξ : U −→ Y be a dominating regular map between a
non–void Zariski open subset U of X and Y . Since Pc(X) = Pc(U), it suffices
to show that Pc(U) ≥ Pc(Y ). By the previous part of the proof, we know
that pc,U ≥ pc,Y ◦ ξ. Let K := Pc(U) and let UK := p−1

c,U(K). By the last
part of Lemma 1.7, we have that UK is Zariski dense in U , hence, being ξ
dominating, ξ(UK) is Zariski dense in Y . Moreover, ξ(UK) is contained in⋃K

h=0 p−1
c,Y (h) because K = pc,U(x) ≥ pc,Y (ξ(x)) for each x ∈ UK . In this way,

p−1
c,Y (h) is Zariski dense in Y for some h ∈ {0. . . . , K} so, applying the last

part of Lemma 1.7 again, it follows that Pc(Y ) ≤ K. 2

Corollary 1.9 a) The curve genus at a point is a Zariski local biregular
invariant, i.e., if X and Y are real algebraic varieties, x is a point of X∗, y
is a point of Y∗, U is a Zariski open neighborhood of x in X, V is a Zariski
open neighborhood of y in Y and ϕ : U −→ V is a biregular isomorphism
such that ϕ(x) = y, then pc(X, x) = pc(U, x) = pc(V, y) = pc(Y, y).

b) The curve genus is a biregular invariant, i.e., if X and Y are real al-
gebraic varieties with X∗ and Y∗ biregularly isomorphic, then pc(X) = pc(Y ).

c) The rational curve genus is a birational invariant, i.e., if X and Y are
real algebraic varieties with X∗ and Y∗ birationally isomorphic, then Pc(X) =
Pc(Y ).

d) The curve genus function is preserved by biregular isomorphisms, i.e.,
if X and Y are real algebraic varieties and ϕ : X∗ −→ Y∗ is a biregular
isomorphism, then pc,X = pc,Y ◦ ϕ.

1.3 Toric genera and toric dimensions

Toric genera. Let us start with a lemma.

Lemma 1.10 Let X be a real algebraic variety. Then, there is an integer
H ∈ N which satisfies the following assertion: if there are a Zariski open
subset Z of X with Z∩X∗ 6= ∅, a finite family {Di}i∈I of real algebraic curves
and an injective regular map between Z and the product variety

∏
i∈I Di, then

min i∈I g(Di) ≤ H.

Proof. We may suppose X irreducible. For each h ∈ N, define Xh :=⋃
D∈CX(h) D and Xh := ZclX(Xh). By Lemma 1.2, there is H ∈ N such that

XH = X. Let Z, {Di}i∈I and an injective regular map ϕ : Z −→ ∏
i∈I Di be

11



as in the statement of the lemma. For each j ∈ I, let πj :
∏

i∈I Di −→ Dj

be the natural projection. Since XH is Zariski dense in X, we can find a
real algebraic curve D of Z with genus H. The restriction of ϕ to D is
nonconstant so, for some j ∈ I, the regular map πj ◦ ϕ|D : D −→ Dj is
nonconstant also. From Lemma 1.6, it follows that g(Dj) ≤ H and the proof
is complete. 2

Before giving the definitions of toric genera, we need the preliminary affine
notion of global toric genus. Let V be an affine real algebraic variety. Indi-
cate by T (V ) the set of all integers h ∈ N such that there are a finite family
{Di}i∈I of real algebraic curves with min i∈I g(Di) = h and an injective regu-
lar map between V and

∏
i∈I Di. Remark that, being V affine, T (V ) always

contains 0. Moreover, by Lemma 1.10, we have that sup T (V ) < +∞. We
define the global toric genus gpt(V ) of V by gpt(V ) := max T (V ). Evidently,
the global toric genus is a biregular invariant on affine real algebraic varieties.

Lemma 1.10 ensures that the following definition is consistent.

Definition 1.11 Let X be a real algebraic variety.
First, suppose X irreducible. For each x ∈ X, we denote by Zaff

x (X) the
set of all affine Zariski open neighborhoods of x in X. We define the toric
genus pt(X, x) of X at a point x of X by pt(X, x) := maxV ∈Zaff

x (X) gpt(V ),

the toric genus pt(X) of X by pt(X) := minx∈X pt(X, x) and the rational
toric genus Pt(X) by Pt(X) := maxx∈X pt(X, x).

If X is reducible and X1, . . . , Xs are the irreducible components of X∗,
then, using the same nomenclature, we define pt(X, x) := min{i |Xi3x} pt(Xi, x)
for each x ∈ X∗, pt(X) := min i∈{1,...,s} pt(Xi) and Pt(X) := min i∈{1,...,s} Pt(Xi).

The function pt,X : X∗ −→ N which sends x ∈ X∗ into pt(X, x) is called
toric genus function of X.

Remark 1.12 If D is a real algebraic curve, then pt(D) = Pt(D) = g(D)
and pt,D is constantly equal to g(D).

In the following results, we present the basic properties of toric genera.
We omit the simple proofs.

Lemma 1.13 Let X be a real algebraic variety and let U be a Zariski open
subset of X such that U ∩ X∗ 6= ∅. It holds: pt(X) ≤ Pt(X) and pt,U =
pt,X |U∩X∗. Moreover, if X is affine, gpt(X) ≤ pt(X).

12



Lemma 1.14 Let X and Y be real algebraic varieties. The following asser-
tions are verified.

a) Let f : X∗ −→ Y∗ be an injective regular map. Then, it holds: pt,X ≥
pt,Y ◦ f and pt(X) ≥ pt(Y ). In particular, if X ′ be an algebraic subvariety of
X (of positive dimension), then, pt,X′ ≥ pt,X |X′∗ and pt(X

′) ≥ pt(X).
b) If there is a rational map between X∗ and Y∗ represented by (U, fU)

with fU dominating and injective, then Pt(X) ≥ Pt(Y ).

Corollary 1.15 a) The toric genus at a point is a Zariski local biregular
invariant.

b) The toric genus is a biregular invariant.
c) The rational toric genus is a birational invariant.
d) The toric genus function is preserved by biregular isomorphisms.

Example 1.16 (toric genera of a n–torus) Let {Di}i∈I be a finite family
of real algebraic curves and let T be the product variety

∏
i∈I Di. Define

a := min i∈I g(Di) and let b := max i∈I g(Di). From Lemma 1.8 and the proof
of Lemma 1.10, it follows that pc,X ≥ b and pt,T is constantly equal to a. In
particular, Pc(T ) ≥ pc(T ) ≥ b and pt(T ) = Pt(T ) = a.

Let us present a variant of the global toric genus. Let V be an affine real
algebraic variety. Indicate by Temb(V ) the set of all integers h ∈ N such that
there are a finite family {Di}i∈I of real algebraic curves with min i∈I g(Di) = h
and a biregular embedding of V into

∏
i∈I Di, i.e., an injective regular map

ϕ : V −→ ∏
i∈I Di such that ϕ(V ) is an algebraic subvariety of

∏
i∈I Di and

ϕ−1 : ϕ(V ) −→ V is a regular map also. We define the biregular global toric
genus bgpt(V ) of V by bgpt(V ) := max Temb(V ). Evidently, 0 ∈ Temb(V ) and
Temb(V ) ⊂ T (V ), hence bgpt(V ) is well-defined and bgpt(V ) ≤ gpt(V ). The
biregular global toric genus is a biregular invariant on affine real algebraic
varieties.

Toric dimensions. Let us introduce the notions of toric dimensions.

Definition 1.17 Let X be a real algebraic variety.
First, suppose X is irreducible. The toric dimension tdim(X) of X is the

minimum integer n ∈ N \ {0} such that there are a non–void affine Zariski
open subset V of X, real algebraic curves D1, . . . , Dn with min i∈{1,...,n} g(Di) ≥
pt(X) and an injective regular map between V and

∏n
i=1 Di. Replacing pt(X)
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with Pt(X), we obtain the definition of rational toric dimension Tdim(X)
of X.

If X is reducible and X1, . . . , Xs are the irreducible components of X∗,
then, using the same nomenclature, we define tdim(X) := max i∈{1,...,s} tdim(Xi)
and Tdim(X) := max i∈{1,...,s} Tdim(Xi).

Remark 1.18 If D is a real algebraic curve, then both tdim(D) and Tdim(D)
are equal to 1.

The toric dimension is a biregular invariant and the rational toric dimen-
sion is a birational invariant on real algebraic varieties.

1.4 Comparison, variation and bounds

Comparison. We define a new biregular invariant on real algebraic varieties.

Definition 1.19 Let X be a real algebraic variety. We indicate by eX :
X∗ −→ N the function which sends x into the minimum genus of a real
algebraic curve of X containing x and define e(X) := minx∈X∗ eX(x).

The consistency of the previous definition follows from Lemma 1.1 (or,
simply, from the Dubois–Efroymson dimension theorem [28]).

Lemma 1.20 Let X be a real algebraic variety. Then, it holds:

pt,X ≤ eX ≤ pc,X , pt(X) ≤ e(X) ≤ pc(X),

pt(X) ≤ Pt(X) ≤ pc(X) ≤ Pc(X)

and
dim(X) ≤ tdim(X) ≤ Tdim(X).

Moreover, if X is affine, bgpt(X) ≤ gpt(X) ≤ pt(X).

Proof. We may suppose X irreducible. Following the argument used in the
proof of Lemma 1.10, it is easy to see that Pt(X) ≤ pc(X) and, for each
x ∈ X, pt,X(x) ≤ eX(x). In particular, it follows that pt(X) ≤ e(X). The
remaining inequalities are evident or just known. 2
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Variation. A real Nash set (over R ) is a topological space X equipped
with a subsheaf NX of the sheaf of germs of functions on X with values in R
isomorphic to a Nash subset of some Rn equipped with its sheaf of germs
of Nash functions (see chapter 8 of [4]). Evidently, an affine real algebraic
variety has a natural structure of real Nash set. The notions of Nash map
and Nash isomorphism between real Nash sets can be defined similarly to
the algebraic case.

Definition 1.21 Let X and X̃ be affine real algebraic varieties. A regular
map ϕ : X̃ −→ X is said to be a weak change of the algebraic structure
of X if ϕ(Sing(X̃)) ⊂ Sing(X) and, equipping X and X̃ with their natural
structure of real Nash sets, ϕ is a Nash isomorphism.

Remark 1.22 If X is nonsingular, then X̃ is nonsingular also.

The following result is elementary, but fundamental, because it reveals
two important aspects of our genera in the affine case:

i) The real Nash set structure of an affine real algebraic variety does not
determinate any of our genera. In this sense, we can say that the nature of
such invariants is completely algebraic.

ii) Our genera are not trivial.

Lemma 1.23 Let X be an affine real algebraic variety and let H ∈ N. Then,
there exists a weak change ϕ : X̃ −→ X of the algebraic structure of X such
that bgpt(X̃) ≥ H. In particular, gpt(X̃), pt(X̃), Pt(X̃), pc(X̃) and Pc(X̃)
satisfy the same inequality.

Proof. By using the real algebraic Alexandrov compactification of X, we
may suppose that X is a bounded algebraic subvariety of some Rn. For each
i ∈ {1, . . . , n}, let Hi be the hyperplane of Rn defined by the equation xi = 1.
Using a translation of Rn if needed, we may suppose that X ∩⋃n

i=1 Hi = ∅
also. Fix an odd integer d such that 1

2
(d − 1)(d − 2) ≥ H. Define the real

algebraic curve Dd by Dd := {(x, y) ∈ R2 |xd + yd = 1} and the regular map
ψ : Dd −→ R by ψ(x, y) := x. Let ψn : Dn

d −→ Rn be the nth–power of ψ,

let X̃ := (ψn)−1(X) and let ϕ : X̃ −→ X be the restriction of ψn between

X̃ and X. The map ϕ is a weak change of the algebraic structure of X and
bgpt(X̃) ≥ g(Dd) = 1

2
(d− 1)(d− 2) ≥ H. 2
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Remark 1.24 Making use of the previous lemma and the real algebraic blow-
ing down, it is possible to prove the following assertion: “Let X be an affine
real algebraic variety with dim(X) ≥ 2 and let H, K ∈ N. Then, there ex-

ists a weak change ϕ : X̃ −→ X of the algebraic structure of X such that
pt(X̃) ≥ H and pc(X̃) ≥ pt(X̃) + K”.

Bounds for curve and toric genera. We present an explicit upper
bound for the rational curve genus and a criterion to obtain a lower bound
for the toric genus of a real algebraic variety. For simplicity, we consider the
affine irreducible case only.

Let X be an irreducible algebraic subvariety of Rn of dimension r. First,
suppose r < n. We define the complete intersection degree cideg(X, Rn) of X
in Rn as the minimum integer c such that there are a point p ∈ Nonsing(X)
and polynomials P1, . . . , Pn−r vanishing on X with independent gradients at
p and c =

∏n−r
i=1 deg(Pi). If r = n, then we consider cideg(X, Rn) equal to 1.

We call Castelnuovo function the function Castel : N∗×N∗ −→ N defined
as follows: for each (d, n) with d or n equal to 1, Castel(d, n) := 0 and, for
each (d, n) with d ≥ 2 and n ≥ 2, Castel(d, n) := 1

2
a(a−1)(n−1)+ab where

a and b are the unique non–negative integers such that d− 1 = a(n− 1) + b
and b ∈ {0, 1, . . . , n−2}. It is easy to see that Castel(d, n) ≤ 1

2
(d−1)(d−2).

Lemma 1.25 Let X be a r–dimensional irreducible algebraic subvariety of
Rn (with r ≥ 1) and let c := cideg(X, Rn). Suppose X is nondegenerate in
Rn, i.e, is not contained in any affine hyperplane of Rn. Then, it holds:

Pc(X) ≤ max pc,X ≤ Castel(c, n− r + 1).

Proof. This is an immediate consequence of Theorem 1.4 of [33]. 2

Let X be an affine irreducible real algebraic variety and let (x, y) be
a pair of distinct points of X. Denote by SepX(x, y) the set of all inte-
gers h ∈ N such that there are a real algebraic curve D of genus h and
f ∈ R(X,D) which distinguishes x and y. Remark that, being X affine,
0 ∈ SepX(x, y). Moreover, from Lemma 1.1 and Lemma 1.6, it follows that
sup SepX(x, y) < +∞. We define the separation genus sepX(x, y) of x and
y in X by sepX(x, y) := max SepX(x, y).

Lemma 1.26 Let X be an affine irreducible real algebraic variety and let ∆
be the diagonal of X2 = X ×X. Then, it holds:

gpt(X) = min (x,y)∈X2\∆ sepX(x, y)
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Proof. Define k := gpt(X) and h := min (x,y)∈X2\∆ sepX(x, y). By definition
of gpt(X), there are a finite family {Di}i∈I of real algerbaic curves with
min i∈I g(Di) = k and an injective regular map ϕ : X −→ ∏

i∈I Di. For each
j ∈ I, let πj :

∏
i∈I Di −→ Dj be the natural projection. Fix (x, y) ∈ X2 \∆

and choose j ∈ I in such a way that the composition map πj◦ϕ distinguishes x
and y. It follows that sepX(x, y) ≥ g(Dj) ≥ k. In particular, it holds: h ≥ k.
Let us show the converse inequality. For each (x, y) ∈ X2 \∆, choose a real
algebraic curve Dx,y with g(Dx,y) = sepX(x, y) and fx,y ∈ R(X,Dx,y) which
distinguishes x and y. Remark that ∆ =

⋂
(x,y)∈X2\∆(fx,y × fx,y)

−1(∆x,y)
where ∆x,y is the diagonal of Dx,y × Dx,y. By noetherianity, it is possible
to extract a finite family {fxi,yi

}i∈I from {fx,y}(x,y)∈X2\∆ in such a way that
∆ =

⋂
i∈I(fxi,yi

× fxi,yi
)−1(∆xi,yi

). Let fi := fxi,yi
and Di := Dxi,yi

for each
i ∈ I. It follows that the regular map

∏
i∈I fi : X −→ ∏

i∈I Di is injective so
k ≥ min i∈I g(Di) ≥ h. This completes the proof. 2

As an immediate consequence, we have the following corollary.

Corollary 1.27 Let X be an affine irreducible real algebraic variety. Sup-
pose there is an integer h ∈ N with the following property: for each pairs (x, y)
of distinct points of X, there are a real algebraic curve Dx,y with g(Dx,y) ≥ h
and fx,y ∈ R(X, Dx,y) which distinguishes x and y. Then, it holds:

pt(X) ≥ gpt(X) ≥ h.

Upper bound for toric dimensions. We present an upper bound for
the rational toric dimension of a real algebraic variety having rational toric
genus greater than or equal to 2. We will use such a bound in subsection 2.2.

Recall that C indicates the algebraic closure of the fixed real closed
field R. In what follows, by algebraic curve over C, we mean a 1–dimensional
nonsingular irreducible Zariski closed subspace of some projective space Pn(C).
Let A be an algebraic curve over C and let Im2(A) be the set of all noncon-
stant regular maps between A and some algebraic curve B over C with genus
greater than or equal to 2. Define an equivalent relation FC on Im2(A) as
follows: f ∈ R∗(A,B) is FC–equivalent to f ′ ∈ R∗(A,B′) in Im2(A) if and
only if there is a biregular isomorphism h : B −→ B′ such that f ′ = h ◦ f .
Indicate by Im2(A) the set of all FC–equivalence classes of Im2(X).

Theorem (de Franchis [29], Harris, Howard–Sommese [35]). For
each algebraic curve A over C, the set Im2(A) is finite and there exists an
upper bound for its cardinality ]Im2(A) in terms of the genus g(A) of A only.

This result ensures the consistency of the following definition.
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Definition 1.28 We call de Franchis function the function F : N −→ N
which sends a ∈ N into the maximum integer k ∈ N such that there is an
algebraic curve A over C with g(A) = a and ]Im2(A) = k. We indicate by
F∗ the smallest non–decreasing function f : N −→ N such that F ≤ f .

Evidently, it holds: F(0) = F(1) = 0 and F(2) = 1.

Remark 1.29 In [35], Howard and Sommese gave the first explicit upper
bound for F . This bound has been improved successively by Kani [39] and
Alzati and Pirola [2]. Really, all these bounds are upper bounds for F∗ also.
For completeness, we recall the Alzati–Pirola bound (which is the better):
for each a ≥ 3, F∗(a) ≤ exp

{
4
3
(ln 3)(a2 − 1) + [log2(a)] ln(84a) + ln(12

√
2)

}
where [x] indicates the integer part of a real number x. The previous bound
implies the following one: F∗(a) ≤ 3(4/3)(a+1)2 for each a ≥ 3.

The next lemma contains the mentioned upper bound.

Lemma 1.30 Let X be a real algebraic variety with Pt(X) ≥ 2. Then, it
holds:

Tdim(X) ≤ F∗(Pc(X)).

Moreover, when X is irreducible, it holds:

Tdim(X) ≤ F(Pc(X)).

Before proving this result, we need a real version of the previous theorem.
Let X be an irreducible real algebraic variety and let G2(X) be the set
of all nonconstant rational maps between X and some real algebraic curve
D with g(D) ≥ 2. Define an equivalence relation F on G2(X) as follows:
α ∈ Ratio∗(X,D) is F–equivalent to β ∈ Ratio∗(X,D′) in G2(X) if and only
if there is birational isomorphism γ between D and D′ such that β = γ ◦ α.
Indicate by G2(X) the set of all F–equivalence classes of G2(X).

The following lemma will be proved in section 3.

Lemma 1.31 Let X be an irreducible real algebraic variety. Then, the set
G2(X) is finite and it holds: ]G2(X) ≤ F(Pc(X)).

Proof of Lemma 1.30. It suffices to prove the lemma in the case X is irre-
ducible. Let n := Tdim(X) and m := ]G2(X). We will show that n ≤ m
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so, by Lemma 1.31, the proof will be complete. Suppose on the contrary
that m < n. By definition of rational toric dimension, there are a non–
void affine Zariski open subset Z of X, real algebraic curves D1, . . . , Dn with
min i∈{1,...,n} g(Di) = Pt(X) and an injective regular map ϕ between Z and
T :=

∏n
i=1 Di. For each i ∈ {1, . . . , n}, let πi : T −→ Di be the natural pro-

jection, let ϕi : Z −→ Di be the composition πi ◦ϕ and let Φi be the rational
map between X and Di represented by ϕi. Up to rearrange the indices, we
may suppose that there are a function η : {m+1, . . . , n} −→ {1, . . . , m} and,
for each i ∈ {m+1, . . . , n}, a birational isomorphism αi between Di and Dη(i)

such that Φη(i) = αi ◦ Φi. For each i ∈ {m + 1, . . . , n}, choose a non–void
Zariski open subset Ωi of Di and a biregular embedding ψi : Ωi −→ Dη(i)

which represents αi. Let Ω be the Zariski open subset of T defined by
Ω :=

∏m
i=1 Di ×

∏n
i>m Ωi. Let us prove that ϕ(Z) ∩ Ω 6= ∅. If this would

not be true, then ϕ(Z) ⊂ T \ Ω =
⋃n

j>m

(∏j−1
i=1 Di × (Dj \ Ωj)×

∏n
i>j Di

)
.

Since each Dj \ Ωj is finite and ZclT (ϕ(Z)) is irreducible, there would exist
j ∈ {m+1, . . . , n} and p ∈ Dj\Ωj such that ϕ(Z) ⊂ ∏j−1

i=1 Di×{p}×
∏n

i>j Di.
This contradicts the definition of n. In this way, we have that ϕ(Z)∩Ω 6= ∅ so
Z ′ := ϕ−1(Ω) is a non–void affine Zariski open subset of X. Let ϕ′ : Z ′ −→ Ω
be the restriction of ϕ between Z ′ and Ω, let ψ : Ω −→ ∏m

i=1 Di×
∏n

i>m Dη(i)

be the regular map defined by ψ :=
∏m

i=1 idDi
× ∏n

i>m ψi where idDi
indi-

cates the identity map on Di and let π :
∏m

i=1 Di ×
∏n

i>m Dη(i) −→
∏m

i=1 Di

be the natural projection. At this point, since ϕη(i) = ψi ◦ ϕi on Z ′ for each
i ∈ {m + 1, . . . , n}, it is immediate to see that the composition π ◦ ψ ◦ ϕ′ :
Z ′ −→ ∏m

i=1 Di is an injective regular map. This contradicts the definition
of n again. 2

Lemma 1.30 has the following corollary.

Corollary 1.32 Let X be a real algebraic variety with Pt(X) ≥ 2 and let
r := dim(X). Then, it holds:

Pc(X) ≥ −1 + 1
2

√
3 log3(r).

Proof. Since r ≤ Tdim(X), by Lemma 1.30 and Remark 1.29, we have that
r ≤ 3(4/3)(Pc(X)+1)2 . This inequality is equivalent to the one stated above. 2
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2 The main theorems

2.1 Total algebraic obstructions

The new algebraic invariants generate some elementary, but deep, obstruc-
tions to the existence of non–elementary rational and regular maps between
real algebraic varieties. Let us present such obstructions. First, we recall the
notion of Zariski locally constant map.

Definition 2.1 Let X and Y be real algebraic varieties. A map f : X −→ Y
is said to be Zariski locally constant if, for each x ∈ X, there is a Zariski
neighborhood of x in X on which f is constant or, equivalently, if f is con-
stant on each irreducible component of X.

Remark that every constant map is Zariski locally constant and every
Zariski locally constant map is regular.

Theorem 2.2 Let X and Y be real algebraic varieties. The following asser-
tions are verified.

a) If pc(X) < pt(Y ) (or, better, pc(X) < e(Y )), then every regular map
between X and Y is Zariski locally constant.

b) If Pc(X) < pt(Y ) (or, better, Pc(X) < e(Y )), then every rational map
between X and Y is Zariski locally constant, i.e., it is represented by a Zariski
locally constant map.

Proof. a) Since pt(Y ) ≤ e(Y ), it suffices to prove that, if there exists a
regular map between X and Y which is not Zariski locally constant, then
pc(X) ≥ e(Y ). Let f be such a map. There is an irreducible component
X ′ of X∗ such that f |X′ is nonconstant. Let Y ′ := ZclY (f(X ′)) and let
f ′ : X ′ −→ Y ′ be the restriction of f between X ′ and Y ′. Remark that Y ′

is irreducible, dim(Y ′) ≥ 1, Y ′ ⊂ Y∗ and f ′ is dominating. By Lemma 1.8
and Lemma 1.20, we have that pc,X′ ≥ pc,Y ′ ◦ f ′ ≥ eY ′ ◦ f ′ ≥ eY ◦ f |X′ so
pc(X) ≥ pc(X

′) ≥ e(Y ) as desired.
b) Suppose there is a rational map between X and Y represented by

(U, fU) with fU not Zariski locally constant. From Corollary 1.15, Lemma
1.20 and part a) of this proof, we obtain that Pc(X) = Pc(U) ≥ pc(U) ≥ e(Y ).
2
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Corollary 2.3 Let X be a r–dimensional nondegenerate irreducible algebraic
subset of Rn (with r ≥ 1 ), let c := cideg(X,Rn) and let Y be a real algebraic
variety. Then, if Castel(c, n−r+1) < pt(Y ) (or, better, Castel(c, n−r+1) <
e(Y )), every rational map (and hence every regular map) between X and Y
is constant.

Proof. Immediate from the previous result and Lemma 1.25. 2

Let X and Y be real algebraic varieties and let α ∈ Ratio(X, Y ). Suppose
α is represented by the pairs (U, fU) and (U ′, fU ′). Since fU = fU ′ on U ∩U ′,
there is a regular map f : U ∪ U ′ −→ Y such that f |U = fU and f |U ′ = fU ′ .
This means that there exists a largest Zariski dense open subset Uα of X on
which α is represented by a regular map fα : Uα −→ Y . The points of X \Uα

are called fundamental point of α.

Theorem 2.4 Let X and Y be irreducible real algebraic varieties, let x ∈ X
and let y ∈ Y such that pc,X(x) < pt,Y (y) (or, better, pc,X(x) < eY (y) ). The
following assertions are verified.

a) Let f ∈ R(X,Y ). If f sends x into y, then it is constant.
b) Let α ∈ Ratio∗(X, Y ) represented by (U, fU). Suppose x is an accu-

mulation point of X \ U in X and y is a limit point of fU at x. Then, x is
a fundamental point of α.

Proof. Repeat the argument used in the proof of Theorem 2.2, a). 2

In the next result, we will see that, when the target space is affine, up to
a weak change of its algebraic structure, every rational (resp. regular) map
is Zariski locally constant.

Theorem 2.5 Let X and Y be real algebraic varieties. Suppose Y affine.
Then, there is a weak change ϕ : Ỹ −→ Y of the algebraic structure of Y
such that every rational map (and hence every regular map) between X and

Ỹ is Zariski locally constant.

Proof. By Lemma 1.23, we can find a weak change ϕ : Ỹ −→ Y of the
algebraic structure of Y such that pt(Ỹ ) > Pc(X) so, from Theorem 2.2, it

follows that every rational (resp. regular) map between X and Ỹ is Zariski
locally constant. 2

In the remainder of this subsection, we consider only the case R = R.
Let X be an affine real algebraic variety. A Z/2–homology class of X is

called algebraic if it is represented by a Zariski closed subset of X. The ho-
mology of X is said to be totally algebraic if each Z/2–homology class of X is
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algebraic. This notion plays a crucial role in the study of the classical prob-
lem of making smooth objects algebraic (see chapters 11–14 of [4]). We say
that the homotopy of X is algebraically trivial if, for each integer n ∈ N∗,
every regular map between the standard n–sphere and X is homotopic to a
constant.

Theorem 2.6 Let X be an affine real algebraic variety. Then, there exists
a weak change ϕ : X̃ −→ X of the algebraic structure of X such that the
homotopy of X̃ is algebraically trivial. Moreover, if the homology of X is
totally algebraic, then the homology of X̃ is totally algebraic also.

Proof. By Lemma 1.23, there is a weak change ϕ : X̃ −→ X of the algebraic
structure of X such that pt(X̃) ≥ 1. Since the rational curve genus of each
standard sphere is zero, from Theorem 2.2, it follows that the homotopy of
X is algebraically trivial. The last part of the statement follows easily from
the properties of ϕ. 2

As an immediate consequence of this theorem and Theorem 11.3.12 of [4],
we have the following corollary.

Corollary 2.7 For every compact C∞ manifold M of dimension less than
or equal to 5, there is an affine nonsingular real algebraic variety X dif-
feomorphic to M such that the homology of X is totally algebraic, while its
homotopy is algebraically trivial.

2.2 Finiteness of dominating morphism spaces

Let us recall a classical finiteness theorem.

Theorem (Hurwitz [36], de Franchis [29], Martens [49]). Let A
and B be nonsingular irreducible projective complex algebraic curves. Suppose
the genus g(B) of B is greater than or equal to 2. Then, the set R∗

C(A,B) of
all nonconstant regular maps between A and B is finite and there exists an
explicit upper bound for its cardinality in terms of g(A) and g(B) only.

This subsection deals with some extensions of the previous result to the
real algebraic setting. We study the finiteness properties of three kinds of
dominating maps between real algebraic varieties: dominating regular maps,
dominating rational maps and weakly open regular maps.
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Dominating regular and rational maps. Let X and Y be real alge-
braic varieties and let f ∈ R(X, Y ). We say that a map f is dominating
if, for each irreducible component X ′ of X, there exists an irreducible com-
ponent Y ′ of Y such that ZclY (f(X ′)) = Y ′. Remark that a rational map
between X and Y is dominating (see the definition at page 7) if and only if
it is represented by a dominating regular map. We denote by rDom(X, Y )
(resp. RDom(X,Y )) the set of all dominating regular (resp. rational) maps
between X and Y and by rAut(X) (resp. RAut(X)) the set of all biregular
(resp. birational) automorphisms of X.

Definition 2.8 Denote by M : N × (N \ {0, 1}) −→ N the function which
sends (a, b) into the maximum integer k ∈ N such that there are nonsingu-
lar irreducible projective complex algebraic curves A and B with g(A) = a,
g(B) = b and ]R∗

C(A,B) = k. Since M(a, b) = 0 if a < b, we can define the
function M∗ as the smallest function f : N × (N \ {0, 1}) −→ N such that
M≤ f and f(a, b+1) ≤ f(a, b) ≤ f(a+1, b) for each (a, b) ∈ N×(N\{0, 1}).

It is well–known that M(a, a) ≤ 84(a − 1) if a ≥ 2. This bound, due
to Hurwitz, is sharp for infinitely many values of a (see [47]). In [49],
Martens gave the first explicit upper bound for M. Remark that, from
the de Franchis–Harris–Howard–Sommese theorem (stated at page 17), it
follows that M(a, b) ≤ 84(b − 1)F(a) where F is the de Franchis function.
In this way, the explicit upper bounds for F mentioned in Remark 1.29
induces explicit upper bounds for M. In 1999, Tanabe [58] proved that

M(a, b) ≤ 2(a − 1)(2b − 1)
(
4a−1

b−1
+ 1

)2a
if a > b ≥ 2. At the moment,

to the best of our knowledge, this is the better upper bound for M(a, b) if
a > b ≥ 2.

Definition 2.9 We call Hurwitz–Tanabe function the function HT : N ×
(N \ {0, 1}) −→ N defined as follows: H(a, b) := 84(a − 1) if a = b ≥ 2,

H(a, b) := 2(a − 1)(2b − 1)
(
4a−1

b−1
+ 1

)2a
if a > b ≥ 2 and H(a, b) := 0

otherwise.

Remark 2.10 It is easy to see that M∗ ≤ HT and, for each a, b ∈ N\{0, 1},
H(a, b) ≤ 6(a− 1)(4a− 3)2a.

We are now in position to present our finiteness results.
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Theorem 2.11 Let X and Y be irreducible real algebraic varieties. If Pt(Y ) ≥
2, then RDom(X, Y ) and RAut(Y ) (and hence rDom(X,Y ) and rAut(Y ) )
are finite.

More precisely, the following assertions are verified.
a) If pt(Y ) ≥ 2, then

]rDom(X,Y ) ≤M∗(Pc(X), pt(Y ))tdim(Y ) ≤ HT (Pc(X), pt(Y ))F(Pc(Y ))

and

]rAut(Y ) ≤M∗(Pc(Y ), pt(Y ))tdim(Y ) ≤ HT (Pc(Y ), pt(Y ))F(Pc(Y )).

b) If Pt(Y ) ≥ 2, then the inequalities obtained by the previous ones re-
placing rDom(X, Y ) with RDom(X,Y ), rAut(Y ) with RAut(Y ), pt(Y ) with
Pt(Y ) and tdim(Y ) with Tdim(Y ) are verified also.

Furthermore, in the mentioned inequalities, when Y is a real algebraic
curve, we can replace the function M∗ with M and F(Pc(Y )) with 1.

Let X and Y be real algebraic varieties. Define:
u as the number of irreducible components of X∗,
w as the cardinality of X0,
U as the number of irreducible components of Y∗,
V as the number of Zariski connected components of Y∗,
W as the cardinality of Y0

and
Z as the maximum number of irreducible components of a Zariski con-

nected components of Y∗.

Theorem 2.11 ′ (general case). If Pt(Y ) ≥ 2, then RDom(X, Y ) and
RAut(Y ) (and hence rDom(X,Y ) and rAut(Y )) are finite.

More precisely, the following assertions are verified.
a) If pt(Y ) ≥ 2, then

]rDom(X,Y ) ≤ Ww · (W + V · Z · M∗(Pc(X), pt(Y ))tdim(Y )
)u

and
]rAut(Y ) ≤ V ! ·W ! · ZU · M∗(Pc(Y ), pt(Y ))U ·tdim(Y)

where 00 is considered equal 1.
b) If Pt(Y ) ≥ 2, then the inequalities obtained by the previous ones re-

placing rDom(X, Y ) with RDom(X,Y ), rAut(Y ) with RAut(Y ), pt(Y ) with
Pt(Y ) and tdim(Y ) with Tdim(Y ) are also verified.
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Furthermore, in all mentioned inequalities, we can replace the function
M∗ with the Hurwitz–Tanabe function HT and tdim(Y ) and Tdim(Y ) with
F∗(Pc(Y )).

The following corollary is a real version of the Hurwitz–de Franchis–
Martens theorem.

Corollary 2.12 If Pt(Y ) ≥ 2, then RDom(X, Y ) is finite and there exists
an explicit upper bound for its cardinality in terms of u, w, V , W , Z, Pc(X)
and Pc(Y ) only.

Remark 2.13 Suppose that X is an algebraic subvariety of Rn and Y is an
algebraic subvariety of Rm with Pt(Y ) ≥ 2. Let {Xi}u

i=1 be the irreducible
components of X∗ and let {Yj}U

j=1 be the irreducible components of Y∗. For
each i ∈ {1, . . . , u} and for each j ∈ {1, . . . , U}, define: ci := cideg(Xi, R

n),
ri := dim(Xi), ni as the minimum dimension of an affine subspace of Rn

containing Xi, dj := cideg(Yj, R
m), sj := dim(Yj) and mj as the minimum

dimension of an affine subspace of Rm containing Yj. Then, from Lemma
1.25 and Corollary 2.12 (see Theorem 1.4 and Lemma 2.4 of [33]), it follows
that RDom(X,Y ) is finite and there are an explicit upper bound for its car-
dinality in terms of u, w, V , W , Z, {ci, ri, ni}u

i=1 and {dj, sj,mj}U
j=1 only

and a less accurate upper bound for its cardinality in terms of u, w, V , W ,
Z, {ci}u

i=1 and {dj}U
j=1 only.

Weakly open regular maps. Let X and Y be real algebraic varieties
and let f ∈ R(X,Y ). We say that f is weakly open if, for each irreducible
component X ′ of X, there exists an irreducible component Y ′ of Y such that
f(X ′) ⊂ Y ′ and the interior of f(Nonsing(X ′)) in Y ′ is non–void. We denote
by woR(X,Y ) the set of all weakly open regular maps between X and Y .
It is easy to see that if a regular map is dominating or is open in the usual
sense, then it is weakly open also. In other words, indicating by oR(X, Y )
the set of all maps in R(X, Y ) which are open in the usual sense, it holds:
rDom(X, Y ) ∪ oR(X, Y ) ⊂ woR(X,Y ). However, there are real algebraic
varieties X and Y for which the converse inclusion is false. For example, if X
is the line R and Y is the Whitney umbrella {(x, y, z) ∈ R3 | y2 − zx2 = 0},
then the regular map f : X −→ Y which sends x into (0, 0, x) is weakly
open, but, it is neither dominating nor open.

The following is one of the deeper result of this paper.
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Theorem 2.14 Let X and Y be real algebraic varities. If pt(Y ) ≥ 2, then
woR(X,Y ) is finite. In particular, there are only finitely many open regular
maps between X and Y .

Applications and conjectures. Let us apply the previous results.

Theorem 2.15 Let Y be an affine real algebraic variety. Then, there is a
weak change ϕ : Ỹ −→ Y of the algebraic structure of Y with the following
properties:

a) For each real algebraic variety X, the sets RDom(X, Ỹ ) and woR(X, Ỹ )
are finite.

b) The group RAut(Ỹ ) (and hence the group rAut(Ỹ ) ) is finite.

Remark 2.16 In a future paper, we will prove that, if X is irreducible, in
point a) of Theorem 2.15, it is possible to replace woR(X, Ỹ ) with R∗(X, Ỹ ).

We have a conjecture.

Conjecture 2.17 (1st version) For each affine irreducible real algebraic va-

riety Y , there is a weak change ϕ : Ỹ −→ Y of the algebraic structure of Y
such that the unique birational automorphism of Ỹ is the identity, i.e., the
rational map represented by the identity map on Ỹ .

(2nd version) For each affine real algebraic variety Y , there are an affine

real algebraic variety Ỹ and a semi–algebraic homeomorphism ψ : Ỹ −→ Y
such that the unique birational automorphism of Ỹ is the identity and ψ
restricts to a Nash isomorphism between Nonsing(X̃) and Nonsing(X).

2.3 Topology of regular morphism space

Throughout this subsection, we consider only the case R = R.

Topological preliminaries. We recall some classical notions and give
some new definitions concerning function spaces and topological dimension.

Let X and Y be fixed topological spaces (for basic definitions in General
Topology, see chapter 1 of [40]). Indicate by C0(X, Y ) the set of all continuous
maps between X and Y and fix a subset F of C0(X, Y ). For each compact
subset K of X and for each open subset U of Y , define F (K, U) as the set
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of all maps in F which send K into U . The family of finite intersections of
sets of the form F (K,U) is a base for the compact–open (or weak) topology
for F .

Example 2.18 The notions of real analytic set and of real analytic maps
between them can be defined similarly to the real Nash case (see page 15).
Suppose X and Y are affine real algebraic varieties. These varieties have
natural structures of real Nash set and of real analytic set. Therefore, it
makes sense to speak of real Nash and real analytic maps between X and Y .
Indicate by N (X, Y ) (resp. Cω(X, Y )) the set of all real Nash (resp. real
analytic) maps between X and Y . Since N (X,Y ) ⊂ Cω(X, Y ) ⊂ C0(X,Y ),
we can equip N (X, Y ) and Cω(X, Y ) with the compact–open topology.

Let τ and ξ be two topologies for F and let f ∈ F . We say that τ and ξ
coincides at f if and only if the neighborhood system of f in F with respect
to τ is equal to the neighborhood system of f in F with respect to ξ.

Definition 2.19 We say that a topology τ for F is locally compact–open if
it satisfies the following two conditions:

a) τ is finer than the compact–open topology for F .
b) For each x ∈ X and for each f ∈ F , there is a compact neighborhood K

of x in X (depending on x and f ) such that, defining F (f, K) := {g ∈ F | g =
f on X \K}, the compact–open topology for F (f,K) and the relativization
of τ to F (f,K) coincide at f .

Remark that if K satisfies previous condition b), then every compact
neighborhood K ′ of x contained in K satisfies the same condition.

When Y is metrizable, the locally compact–open topologies for F can
be easily described. Let d be a metric for Y . For each f ∈ F , for each
non–void subset K of X and for each ε ∈ R+ := {x ∈ R |x > 0}, define
F (d)

ε (f, K) := {g ∈ F (f, K) | supx∈K d(g(x), f(x)) < ε}. A topology τ for F
finer than the compact–open topology is locally compact–open if and only
if, for each x ∈ X and for each f ∈ F , there is a compact neighborhood K
of x in X such that the set {F (d)

1/n(f,K)}n∈N∗ is a base of the neighborhood
system of f in F (f,K) equipped with the relative topology induced by τ .

Example 2.20 The compact–open topology, the Whitney (or strong) topol-
ogy and, when Y is metrizable by a metric d, the topology of uniform con-
vergence with respect to d for F are always locally compact–open.
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Recall that, given a subset A of the topological product space Y X , the
topology for A induced by Y X is called pointwise topology (or topology of
the pointwise convergence). Remark that F is a subset of Y X .

Definition 2.21 Let Fconst be the set of all maps in F which are locally con-
stant, i.e., constant on each connected component of X. A topology τ for F
is nice if the relativization of τ to Fconst coincides with the pointwise topology
for Fconst.

Example 2.22 Suppose X and Y are real algebraic varieties and let d be
a metric for Y . Since X has a finite family of connected components, the
compact–open topology and the topology of uniform convergence with respect
to d for F are nice.

Let k ∈ N∗ ∪ {∞} and let M and N be Ck manifolds, i.e., second count-
able, Hausdorff, locally Euclidean spaces equipped with differentiable struc-
tures of class Ck. Indicate by Ck(M,N) the set of all Ck maps between
M and N , by Jk(M, N) the topological space of k–jets between M and N
and by jk : Ck(M,N) −→ C0(M,Jk(M,N)) the map which sends f into
its k–jets (see section 4, chapter 2 of [34]). Fix a subset G of Ck(M, N)
and denote by i : G ↪→ Ck(M, N) the inclusion map. We define the Ck

compact–open (or weak) topology for G as the topology induced by the com-
position jk ◦ i from the compact–open topology of C0(M, Jk(M,N)), i.e.,
the smallest topology for G such that, equipping C0(M,Jk(M, N)) with the
compact–open topology, jk ◦ i is continuous.

Remark 2.23 Suppose M and N are nonsingular real algebraic varieties.
These varieties have natural differentiable structures of class Ck for each
k ∈ N∗ ∪ {∞}. In this way, it makes sense to speak of Ck maps between M
and N . Remark that N (M, N) ⊂ Cω(M, N) ⊂ C∞(M,N) so we can equip
N (M, N) and Cω(M,N) with the C∞ compact–open topology.

Definition 2.24 We say that a topology for G is locally Ck compact–open if
it is induced by jk◦i from a locally compact–open topology of C0(M, Jk(M, N)).

Evidently, the Ck compact–open (or weak) topology and the Whitney
Ck (or strong) topology for G are locally Ck compact–open. Moreover, the
former is nice. A class of locally Ck compact–open topologies for G can be

28



obtained following the construction of “Cr topologies” given in section II.1
of [56].

Let us introduce the notions of Brouwer dimension and of quasi–euclidean
(resp. euclidean) set and stratification. Fix a non–void topological space S.
For each n ∈ N, let Dn be the closed ball of Rn centered at the origin with
radious 1. Indicate by B(S) the subset of all integer n ∈ N such that there is
an injective continuous map between Dn and S. Remark that B(S) always
contains 0 because D0 is a single point. We define the Brouwer dimension
dimB S of S by dimB S := sup B(S).

Remark 2.25 The Brouwer dimension is a topological invariant and extends
the notion of vector dimension of Rn. In fact, by Brouwer’s theorem on
invariance of domain, it follows immediately that dimBRn = n. Really, the
Brouwer dimension is closely related with the classical covering dimension
used in Dimension Theory (see Definition I.4 of [51]). Denote by dimC S
the covering dimension of S. It is possible to prove that, if S is metrizable,
dimB S ≤ dimC S and, if S is a locally compact polyhedron with simplicial
dimension r, dimB S = dimC S = r (see Theorems II.1, II.3, II.7, III.6, III.7
and IV.5 of [51]).

We say that S is a quasi–euclidean (resp. euclidean) set if there is an
injective continuous map (resp. a homeomorphism into its image) between
S and some Rn. Let I be a finite set ordered by a reflexive and transitive
relation ¹ such that i ¹ j and j ¹ i imply i = j. A partition S = {Si}i∈I

of S is called a quasi–euclidean (resp. euclidean) stratification of S if each
subspace Si of S (called stratum of S) is a quasi–euclidean (resp. euclidean)
set and, for each i ∈ I,

⊔
{j∈I | i¹j} Sj is closed in S. Furthermore, such a

stratification is called singular if I is totally ordered by ¹ and, for each
i, j ∈ I with i ¹ j and i 6= j, dimB Si > dimB Sj.

Suppose S has a quasi–euclidean stratification {Si}i∈I . Then, the follow-
ing assertions are verified.

a) Each stratum Si of S is locally closed in S.
b) dimB S is finite and it holds: dimB S = max i∈I dimB Si.
For each i ∈ I, the stratum Si is the difference between the following

two closed subsets of S:
⊔
{j∈I | i¹j} Sj and

⋃
{j∈I | i¹j, i 6=j}

⊔
{k∈I | j¹k} Sk. In

this way, assertion a) is proved. Let us prove assertion b). Since each Si

has finite Brouwer dimension and the inequality dimB S ≥ max i∈I dimB Si

is evident, it suffices to prove that B(S) ⊂ ⋃
i∈I B(Si). Let n ∈ B(S),

let ϕ : Dn −→ S be an injective continuous map, let Iϕ := {i ∈ I |Si ∩
ϕ(Dn) 6= ∅} and let m be a minimal element of Iϕ. Define Sϕ :=

⊔
i∈Iϕ

Si
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and S∗ϕ :=
⋃

i∈Iϕ\{m}
⊔
{j∈I | i¹j} Sj. Remark that ϕ(Dn) ⊂ Sϕ, S∗ϕ is closed

in S and Sϕ \ S∗ϕ = Sm. In particular, it holds: ϕ−1(Sm) = Dn \ ϕ−1(S∗ϕ). It
follows that ϕ−1(Sm) is a non–void open subset of Dn so n ∈ B(Sm).

The theorems: general case. Let X and Y be real algebraic varieties.
Denote by Isol(X) (resp. Isol(Y )) the set of all isolated points of X (resp.
Y ) and define:

a as the number of Zariski connected components of X,
b as the number of irreducible components of X,
w as the cardinality of X0,
δ as the cardinality of Isol(X),
η as the number of connected components of X \ Isol(X),
s as the dimension of Y

and
σ as the cardinality of Isol(Y ).
Evidently, it holds: b ≥ a > w, δ ≥ w and η ≥ a − w. A map in

C0(X,Y ) is said to be trivial if it sends X \ Isol(X) into Isol(Y ). We denote
by Triv(X, Y ) the set of all trivial maps between X and Y . Let L be a
subset of C0(X, Y ). Equip C0(X, Y ) with some topological structure ν. We
say that L is nowhere dense up to trivial maps in C0(X, Y ) if L \Triv(X, Y )
is nowhere dense in C0(X, Y ), i.e., the interior of the closure of L\Triv(X, Y )
in C0(X,Y ) is void. Suppose ν is locally compact–open. It is easy to see
that Triv(X, Y ) is open and closed in C0(X, Y ) and contains the isolated
points of C0(X,Y ). Moreover, if ν is nice, Triv(X,Y ) is homeomorphic to
the disjoint topological sum of ση copies of Y δ where Y ∅ is considered equal
to a point.

By the symbol Map(X,Y ), we indicate one of the topological spaces de-
scribed below:

i) C0(X, Y ) equipped with a locally compact–open topology,

ii) N (X,Y ), or Cω(X, Y ), equipped with the compact–open topology,
where X and Y are assumed to be affine.

We denote by τ the topology of Map(X,Y ). If, in case i), τ is the compact–
open topology, then we say that Map(X,Y ) is equipped with the compact–
open topology. Unless otherwise indicated, R(X, Y ) is considered as a sub-
space of Map(X, Y ).

Before stating our main theorem concerning the topology of R(X, Y ), we
present a lemma which describes the elementary structure of the space of
trivial regular maps and a dimensional property of Map(X,Y ).
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Lemma 2.26 a) Indicate by TrivR(X,Y ) the intersectionR(X, Y )∩Triv(X, Y )
equipped with the relative topology induced by Map(X, Y ). Then, TrivR(X,Y )
coincides with the set of all Zariski locally constant maps between X and Y
which send X∗ into Isol(Y ) and, if τ is nice, it is homeomorphic to the topo-
logical disjoint sum of σa−w copies of Y w.

b) It holds: dimB Map(X,Y ) = +∞ and, when Map(X, Y ) is metrizable,
dimC Map(X, Y ) = +∞ also.

The next theorem gives a description of the topology of R(X, Y ).

Theorem 2.27 The following assertions are verified.
a) If pc(X) < pt(Y ) (or, better, pc(X) < e(Y ) ), then R(X,Y ) coincides

with the set of all Zariski locally constant maps between X and Y , has a
quasi–euclidean stratification S and dimBR(X,Y ) ≤ as. Moreover, if τ is
nice, R(X, Y ) is homeomorphic to Y a and hence the stratification S can be
choosen singular and euclidean and dimBR(X,Y ) = as.

b) If pt(Y ) ≥ 1, then R(X, Y ) is nowhere dense up to trivial maps in
Map(X, Y ).

c) Equip R(X,Y ) with a topology ξ finer than the pointwise topology (as,
for example, the one induced by Map(X,Y )). If pc(X) ≥ pt(Y ) ≥ 2, then
R(X, Y ) has a quasi–euclidean stratification S and dimBR(X, Y ) ≤ bs.
Moreover, if ξ is nice, dimBR(X, Y ) ≥ as and, if ξ is nice and X is ir-
reducible, S can be choosen singular.

The previous theorem asserts that, when pc(X) < pt(Y ), R(X,Y ) is as
small as possible, when pt(Y ) ≥ 1, it is topologically small in Map(X, Y )
and, when pt(Y ) ≥ 2, it has a quasi–euclidean stratification and hence it is
dimensionally small in Map(X, Y ) also.

In the following result, we describe the topology of R(X, Y ) under a
hypothesis stronger than pt(Y ) ≥ 2. The reader recalls the definition of
biregular global toric genus given at page 13.

Theorem 2.28 Suppose Y affine and equip R(X, Y ) with the compact–open
topology. If bgpt(Y ) ≥ 2, then R(X,Y ) is an euclidean set and it holds:
as ≤ dimBR(X, Y ) = dimCR(X, Y ) ≤ bs. Moreover, if X is irreducible
and Y is compact, R(X, Y ) is compact also.

We give an application of the previous results.

31



Corollary 2.29 Let Y be an affine real algebraic variety. Then, there is a
weak change ϕ : Ỹ −→ Y of the algebraic structure of Y with the follow-
ing property: For each real algebraic variety X, equipping Map(X, Ỹ ) with

the compact–open topology, R(X, Ỹ ) is nowhere dense up to trivial maps in

Map(X, Ỹ ), is an euclidean set and dimBR(X, Ỹ ) is finite. Moreover, if X

is irreducible and Y is compact, R(X, Ỹ ) is compact also.

Figure 1: Topology of regular morphism space: general case

The theorems: nonsingular case. Let M and N be real algebraic
manifolds, i.e., nonsingular real algebraic varieties. Define:

l as the number of irreducible components of M
and

n as the dimension of N .
By the symbol Smo(M, N), we indicate one of the topological spaces

described below:

i′) Ck(M,N) equipped with a locally Ck compact–open topology, where
k ∈ N∗ ∪ {∞},

ii′) N (M,N), or Cω(M,N), equipped with the C∞ compact–open topolo-
gy, where M and N are assumed to be affine.

We indicate by λ the topology of Smo(M,N). If, in case i′), λ is the Ck

compact–open topology, then we say that Smo(M,N) is equipped with the
Ck compact–open topology. Unless explicitly stated otherwise, R(M,N) is
considered as a subspace of Smo(M, N). Denote by Ω(M, N) the comple-
ment of the closure of R(M,N) in Smo(M, N) and by Σ(M, N) the set of
all maps f ∈ Smo(M, N) such that, for some q ∈ N , f−1(q) contains a
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1–dimensional semi–algebraic subset of M (for basic definitions and results
concerning semi–algebraic sets, see chapter 2 and section 3.2 of [4]). Re-
mark that dimB Smo(M,N) = +∞ and, when Smo(M, N) is metrizable,
dimC Smo(M,N) = +∞ also. Moreover, Σ(M,N) is always non–void be-
cause it contains all Zariski locally constant maps between M and N .

The following result is the nonsingular version of Theorem 2.27. The
unique substantial newness is contained in point b).

Theorem 2.30 The following assertions are verified.
a) If pc(M) < pt(N) (or, better, pc(M) < e(N) ), then R(M, N) coin-

cides with the set of all Zariski locally constant maps between M and N ,
is nowhere dense in Smo(M, N), has a quasi–euclidean stratification S and
dimBR(M,N) ≤ nl. Moreover, if λ is nice, R(M, N) is homeomorphic to
Y l and hence the stratification S can be choosen singular and euclidean and
dimBR(M,N) = nl.

b) Suppose pt(N) = 1. Then, the closure of Ω(M, N) in Smo(M, N)
contains Σ(M, N). In particular, Ω(M,N) is non–void, i.e, R(M, N) is
not dense in Smo(M,N).

c) Equip R(M, N) with a topology ξ finer than the pointwise topology (as,
for example, the one induced by Smo(M, N)). If pc(M) ≥ pt(N) ≥ 2, then
R(M, N) is nowhere dense in Smo(M,N), has a quasi–euclidean stratifica-
tion S and dimBR(M,N) ≤ nl. Moreover, if ξ is nice, dimBR(M,N) = nl
and, if ξ is nice and M is irreducible, S can be choosen singular.

c′) Suppose N affine and equipR(M,N) with the Ck compact–open topolo-
gy. If bgpt(N) ≥ 2, then R(M, N) is an euclidean set and dimBR(M, N) =
dimCR(M, N) = nl. Moreover, if N is compact, R(M, N) is compact also.

The next result is the nonsingular version of Corollary 2.29.

Corollary 2.31 Let N be an affine real algebraic manifold. Then, there is a
weak change ϕ : Ñ −→ N of the algebraic structure of N with the following
property: For each real algebraic manifold M , equipping Smo(M, Ñ) with

the Ck compact–open topology, R(M, Ñ) is nowhere dense in Smo(M, Ñ),

is an euclidean set and dimBR(M, Ñ) is finite. Moreover, if N is compact,

R(M, Ñ) is compact also.
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Figure 2: Topology of regular morphism space: nonsingular case

3 Proof of finiteness theorems

Lemma 3.1 Let X be an irreducible real algebraic variety and let D be a
real algebraic curve with g(D) ≥ 2. Then, Ratio∗(X,D) and R∗(X,D) are
finite and it holds:

]Ratio∗(X, D) ≤M(Pc(X), g(D))

and
]R∗(X,D) ≤M(pc(X), g(D)).

Proof. Step I. Suppose X is a real algebraic curve. Bearing in mind Defi-
nition 2.8, the lemma follows immediately from the uniqueness of the com-
plexification of nonconstant rational (resp. regular) maps between real alge-
braic curves, the Hurwitz–de Franchis–Martens theorem (see page 22) and
Lefschetz’s principle.

Step II. Let us complete the proof. Let h := M(Pc(X), g(D)). We must
prove that ]Ratio∗(X, D) is less than or equal to h. Suppose on the contrary
that Ratio∗(X, D) contains h + 1 distinct elements α0, α1, . . . , αh. Then,
there are a non–void Zariski open subset Z of X and maps f0, f1, . . . , fh

in R∗(Z, D) which represent α0, α1, . . . , αh respectively. By the last part of
Lemma 1.7, there is a point p of Z such that Pc(X) = pc,X(p) = pc,Z(p).

Define ∆ :=
⋃h

i=0 f−1
i (fi(p)) ∪ ⋃

i 6=j{x ∈ Z | fi(x) = fj(x)}. Since each
map fi is nonconstant and, for each i, j ∈ {0, 1, . . . , h} with i 6= j, fi and
fj are distinct maps, we have that ∆ is a proper Zariski closed subset of
Z. In this way, bearing in mind the definition of curve genus at a point,
it is possible to find a real algebraic curve E of Z containing p such that
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g(E) = pc,Z(p) = Pc(X) and E 6⊂ ∆. By definition of ∆, it follows that the
regular maps f0|E, f1|E, . . . , fh|E are h+1 distinct elements ofR∗(E, D). This
is impossible because, thanks to Step I, ]R∗(E, D) ≤ M(g(E), g(D)) = h.
The proof of the inequality ]R∗(X,D) ≤M(pc(X), g(D)) is similar. 2

Proof of Lemma 1.31. Step I. Suppose X is a real algebraic curve. Let XC

be a projective nonsingular complexification of X. The map ϕ : G2(X) −→
Im2(XC), which sends the F–equivalence class of an element α of G2(X)
into the FC–equivalence class of the complexification of α in Im2(XC), is
well–defined and injective. In this way, bearing in mind Definition 1.28, the
de Franchis–Harris–Howard–Sommese theorem (see page 17) ensures that
]G2(X) ≤ ]Im2(XC) ≤ F(g(X)) = F(Pc(X)).

Step II. Let us complete the proof. If Pc(X) < 2, then, by Theo-
rem 2.2, b), we know that G2(X) = ∅ so the lemma is proved. Suppose
Pc(X) ≥ 2 and define K := F(Pc(X)). We must show that ]G2(X) ≤ K.
Suppose on the contrary that G2(X) contains K + 1 dinstinct elements
α0 ∈ Ratio∗(X, D0), . . . , αK ∈ Ratio∗(X, DK) for some real algebraic curves
D0, . . . , DK . Let A be the set of all pairs (i, j) ∈ {0, 1, . . . , K}2 with i < j
and Di and Dj are birationally isomorphic. Fix (i, j) ∈ A and indicate by
Bij the set of all birational isomorphisms between Di and Dj. By Lemma
3.1, Bij is finite. Fix a non–void Zariski open subset Ωij of Di and choose
regular maps gij1, . . . , gi,j,Nij

between Ωij and Dj which represents the ele-
ments of Bij. For each i ∈ {0, 1, . . . , K}, define Ai := {j | (i, j) ∈ A} and
Ωi :=

⋂
j∈Ai

Ωij (where Ωi := Di if Ai = ∅). Since each αi is noncon-
stant, there exist a non–void Zariski open subset Z of X and regular maps
f0 : Z −→ D0, . . . , fK : Z −→ DK which represent α0, . . . , αK respectively
and satisfy the following condition: fi(Z) ⊂ Ωi for each i ∈ {0, 1, . . . , K}.
By the last part of Lemma 1.7, there is p ∈ Z such that pc(X, p) = Pc(X).

Let (i, j) ∈ A. Define ∆ij :=
⋃Nij

h=1{x ∈ Z | (gijh ◦ fi)(x) = fj(x)}. Remark
that ∆ij is a proper Zariski closed subset of Z, otherwise αi would be F–
equivalent to αj in G2(X) and our assumption would be contradicted. Let

∆ :=
⋃

(i,j)∈A ∆ij ∪
⋃K

i=0 f−1
i (fi(p)). It follows that ∆ is a proper Zariski

closed subset of Z. In this way, by the definition of pc(X, p), there exists a
real algebraic curve E of Z containing p such that g(E) = Pc(X) and E 6⊂ ∆.
For each i ∈ {0, 1, . . . , K}, define ξi : E −→ Di as the restriction of fi to E
and βi ∈ Ratio∗(E, Di) as the rational map represented by ξi. Remark that
each ξi is nonconstant and, for each (i, j) ∈ A and for each h ∈ {1, . . . , Nij},
the map ξj is different from the composition map gijh ◦ ξi. In particular, for
each i, j ∈ {0, 1, . . . , K} with i 6= j, βi is not F–equivalent to βj in G2(E) so
]G2(E) ≥ K + 1 which is impossible by Step I. 2
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Proof of Theorem 2.11. We will prove only part a). The proof of part b) is
similar. Let n := tdim(Y ). By definition of toric dimension, there are a non–
void affine Zariski open subset V of Y , real algebraic curves D1, . . . , Dn with
min i∈{1,...,n} g(Di) ≥ pt(Y ) ≥ 2 and an injective regular map ϕ : V −→
T :=

∏n
i=1 Di. By Lemma 3.1, we have that, for each i ∈ {1, . . . , n},

Ratio∗(X,Di) is finite and it holds: ]Ratio∗(X,Di) ≤ M(Pc(X), g(Di)) ≤
M∗(Pc(X), pt(Y )). IdentifyRatio(X, T ) with

∏n
i=1Ratio(X, Di) in the natu-

ral way. For each f ∈ rDom(X, Y ), Vf := f−1(V ) is a non–void Zariski
open subset of X so it is possible to define the map ϕ∗ : rDom(X,Y ) −→
Ratio(X,T ) which sends f into the rational map represented by (Vf , ϕ◦f |Vf

).
Remark that ϕ∗ is injective. Let us prove that ϕ∗(rDom(X,Y )) is con-
tained in

∏n
i=1Ratio∗(X,Di). Suppose this is not true. For each i ∈

{1, . . . , n}, let πi : T −→ Di be the natural projection. By the assump-
tion just done, there exists f ∈ rDom(X, Y ), i ∈ {1, . . . , n} and bi ∈ Di

such that (πi ◦ ϕ ◦ f)(Vf ) = {bi}. Without loss of generality, we may
suppose i = 1. It follows that ϕ(f(Vf )) ⊂ {b1} ×

∏n
i=2 Di so, being f

dominating, ϕ(V ) ⊂ {b1} ×
∏n

i=2 Di also. This is impossible by defini-
tion of n. In this way, ϕ∗ injects rDom(X,Y ) into

∏n
i=1Ratio∗(X,Di)

and hence ]rDom(X, Y ) ≤ ∏n
i=1 ]Ratio∗(X,Di) ≤ M∗(Pc(X), pt(Y ))n. By

Lemma 1.20 and Lemma 1.30, it follows that n ≤ Tdim(Y ) ≤ F(Pc(Y )) so
]rDom(X, Y ) ≤M∗(Pc(X), pt(Y ))F(Pc(Y )) also. 2

Proof of Theorem 2 .11 ′. We will prove only part a). The proof of part b) is
similar.

Step I. Suppose that X and Y are Zariski connected. Let X1, . . . , Xu

be the irreducible components of X and let Y1, . . . , YU be the irreducible
components of Y . Denote by F the set of all functions between {1, . . . , u} and
{1, . . . , U}. For each γ ∈ F , let Dγ be the set of all maps f ∈ rDom(X, Y )
such that ZclY (f(Xi)) = Yγ(i) for each i ∈ {1, . . . , u} and let ψγ : Dγ −→∏u

i=1 rDom(Xi, Yγ(i)) be the map which sends f into (f1, . . . , fu) where fi

is the restriction of f between Xi and Yγ(i). Remark that rDom(X, Y ) =⊔
γ∈F Dγ and each ψγ is injective. By Theorem 2.11, we have that

]rDom(X, Y ) ≤ ∑
γ∈F

∏u
i=1M∗(Pc(Xi), pt(Yγ(i)))

tdim(Yγ(i)) ≤
≤ Uu ·M∗(Pc(X), pt(Y ))u·tdim(Y ).

Step II. Let us complete the proof. Let X0 = {p1, . . . , pw}, let Y0 =
{q1, . . . , qW}, let X (1), . . . , X (v) be the Zariski connected components of X∗
and let Y (1), . . . , Y (V ) be the Zariski connected components of Y∗. For each
i ∈ {1, . . . , v}, let ui be the number of irreducible components of X (i) and, for
each j ∈ {1, . . . , V }, let Uj be the number of irreducible components of Y (j).
Remark that

∑v
i=1 ui = u and maxj∈{1,...,V } Uj = Z. For each χ ⊂ {1, . . . , v},
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let Fχ be the set of all functions between {1, . . . , v}\χ and {1, . . . , V } (where
F{1,...,v} is considered equal to the empty set). Let f ∈ rDom(X,Y ). By
definition of dominating regular map, there exist (and are unique) a fun-
ction α : {1, . . . , w} −→ {1, . . . ,W}, a subset χ of {1, . . . , v}, a function
β : χ −→ {1, . . . , W} and a function γ ∈ Fχ such that: f(pi) = qα(i) for each
i ∈ {1, . . . , w}, f(X (i)) = {qβ(i)} for each i ∈ χ and f(X (i)) ⊂ Y (γ(i)) for each
i ∈ {1, . . . , v} \ χ. In this way, it is possible to define an injective map Φ
between rDom(X, Y ) and the following set

⊔
χ⊂{1,...,v}

⊔
γ∈Fχ

(
{1, . . . , W}({1,...,w}tχ) ×∏

i∈{1,...,v}\χ rDom(X(i), Y (γ(i)))
)

by Φ(f) := (αtβ, (fi)i∈{1,...,v}\χ) where αtβ : {1, . . . , w}tχ −→ {1, . . . , W}
is the function which sends i ∈ {1, . . . , w} into α(i) and j ∈ χ into β(j)
and fi is the restriction of f between X (i) and Y (γ(i)). Define H := Z ·
M∗(Pc(X), pt(Y ))tdim(Y ) and, for each i ∈ {1, . . . , v} \ χ, define

Hi := M∗(Pc(X
(i)), pt(Y

(γ(i))))ui·tdim(Y (γ(i))).

Remark that pt(Y
(j)) ≥ pt(Y ) ≥ 2 for each j ∈ {1, . . . , V }. By Step I, we

have that

]rDom(X, Y ) ≤ ∑
χ⊂{1,...,v}

∑
γ∈Fχ

Ww ·W ]χ ·∏i∈{1,...,v}\χ(Uγ(i))ui ·Hi ≤
≤ Ww ·∑χ⊂{1,...,v}W ]χ

∑
γ∈Fχ

H(
∑

i∈{1,...,v}\χ ui) =

= Ww ·∑χ⊂{1,...,v}W ]χ · V v−]χ ·H(
∑

i∈{1,...,v}\χ ui) ≤
≤ Ww ·∑χ⊂{1,...,v}W (

∑
i∈χ ui) · (V ·H)(

∑
i∈{1,...,v}\χ ui) ≤

≤ Ww(W + V ·H)u

as desired. Bearing in mind that rAut(Y ) is contained in rDom(Y, Y ), the
corresponding inequality for rAut(Y ) can be obtained by a similar argument.
2

Proof of Corollary 2.12. Immediate consequence of Theorem 2.11′, Remark
1.29, Lemma 1.30 and Remark 2.10. 2

Let X be a real algebraic variety. Recall that the accumulation points of
Nonsing(X) in X are called central. We denote by Cent(X) the set of all
central points of X, i.e, the closure of Nonsing(X) in X.
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Proof of Theorem 2.14. Step I. Suppose X and Y irreducible. We need a
preliminary study of two particular families of subsets of Y . Define {Yi}k

i=1

and {Y ′
i }k

i=1 as follows:





Y1 := Y, Y ′
1 := Cent(Y ),

Yi+1 := ZclY
(
Sing(Yi) \

⋃i
j=1 Y ′

j

)
, Y ′

i+1 := Cent(Yi+1) \
⋃i

j=1 Y ′
j ,

Yk 6= ∅, Yk+1 = ∅.

Since Yi+1 ⊂ Sing(Yi) for each i, the previous definition is consistent.
We will prove that {Y ′

i }k
i=1 is a partition of Y and, for each i ∈ {1, . . . , k},

Y ′
i 6= ∅, ⊔i

j=1 Y ′
j is closed in Y and Yi \

⊔i−1
j=1 Y ′

j = Y \ ⊔i−1
j=1 Y ′

j . Remark

that, for each i ∈ {1, . . . , k}, Yi \
⋃i−1

j=1 Y ′
j = (Cent(Yi)∪Sing(Yi))\

⋃i−1
j=1 Y ′

j =

Y ′
i t (Yi+1 \

⋃i
j=1 Y ′

j ) so, by induction on i = k, k − 1, . . . , 1, it follows that

Yi \
⋃i−1

j=1 Y ′
j =

⋃k
j=i Y

′
j . In particular, Y =

⋃k
j=1 Y ′

j . On the other hand, by
definition, we know that, for each i, j ∈ {1, . . . , k} with i 6= j, Y ′

i ∩ Y ′
j = ∅

so {Y ′
i }k

i=1 is a partition of Y . It follows that, for each i ∈ {1, . . . , k},
Yi \

⊔i−1
j=1 Y ′

j =
⊔k

j=i Y
′
j = (

⊔k
j=1 Y ′

j )\
⊔i−1

j=1 Y ′
j = Y \⊔i−1

j=1 Y ′
j . Since

⊔i
j=1 Y ′

j =

Cent(Yi) ∪
⊔i−1

j=1 Y ′
j and Yi (and hence Cent(Yi)) is closed in Y , proceeding

by induction on i, it follows immediately that each union
⊔i

j=1 Y ′
j is closed

in Y . Fix i ∈ {1, . . . , k}. From the definition of Yi, we have that dim(Yi) =
dim(Yi \

⊔i−1
j=1 Y ′

j ). In this way, Y ′
i cannot be void. Otherwise, Yi \

⊔i−1
j=1 Y ′

j ⊂
Sing(Yi) \

⊔i−1
j=1 Y ′

j and hence dim(Yi) ≤ dim(Sing(Yi)) which is impossible.
Let us proceed with the proof of this step. For each i ∈ {1, . . . , k}, let

Yi1, . . . , Yi,mi
be the irreducible components of Yi of maximum dimension.

Fix f ∈ woR(X,Y ). Let U be the interior of f(Nonsing(X)) in Y , let
h := min{i ∈ {1, . . . , k} |U ∩ Y ′

i 6= ∅} and let V := U ∩ (Yh \
⊔h−1

j=1 Y ′
j ).

Remark that ∅ 6= U ∩ V ′
h ⊂ V = U ∩ (Y \ ⊔h−1

j=1 Y ′
j ) so V is a non–void

open subset of Y contained in Yh and f−1(V ) ∩ Nonsing(X) is a non–void
open subset of Nonsing(X). In particular, f−1(Yh) = X or, equivalently,
f(X) ⊂ Yh. On the other hand, ZclYh

(f(X)) is irreducible and its interior in
Yh contains V which intersects Y ′

h (and hence Cent(Yh)) so ZclYh
(f(X)) = Yhj

for some (unique) j ∈ {1, . . . ,mh}. In this way, we can define an injective
map between woR(X, Y ) and the set

⊔k
i=1

⊔mi

j=1 rDom(X,Yij) which sends f
into its restriction between X and Yhj. By Lemma 1.14, a), it follows that,
for each i ∈ {1, . . . , k} and for each j ∈ {1, . . . , mi}, pt(Yij) ≥ pt(Y ) ≥ 2 so
Theorem 2.11 ensures that woR(X, Y ) is finite.

Step II. Let us complete the proof. Let X1, . . . , Xb be the irreducible
components of X and let Y1, . . . , YB be the irreducible components of Y .
Fix f ∈ woR(X, Y ). By definition of weakly open map, there exists a map
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ψ : {1, . . . , b} −→ {1, . . . , B} such that, for each i ∈ {1, . . . , b}, f(Xi) ⊂ Yψ(i)

and the restriction fi of f between Xi and Yψ(i) is weakly open. In this way,
there exists an injective map between woR(X,Y ) and the following set

⊔
ψ∈{1,...,B}{1,...,b}

∏b
i=1 woR(Xi, Yψ(i)).

It remains to prove that, for each i ∈ {1, . . . , b} and for each j ∈ {1, . . . , B},
woR(Xi, Yj) is finite. If dim(Yj) = 0, then woR(Xi, Yj) contains only an
element. If dim(Yj) is positive, then dim(Xi) is positive also and, being
pt(Yj) ≥ pt(Y ) ≥ 2, woR(Xi, Yj) is finite by Step I. 2

4 Proof of topological theorems

Throughout this subsection, we consider only the case R = R.
Lemma 2.26 is elementary and Theorem 2.27, a) follows easily from Theo-

rem 2.2, a). In order to prove Theorem 2.27, b), we need some preliminary
notions and results.

Let D and E be a real algebraic curves and let f ∈ R∗(D, E). Define
Df := Nonsing(D) \ f−1(Sing(E)). Since f−1(Sing(E)) is finite, Df is a
non–void Zariski open subset of Nonsing(D). Let x ∈ Df and let y := f(x).
Considering Df and Nonsing(E) as C∞ manifolds, we can find a C∞ coordi-
nate system of Df centered at x and a C∞ coordinate system of Nonsing(E)
centered at y in which the map f is given by t 7−→ ta for some a ∈ N∗. Such an
integer depends only on f and x and will be indicated by νf (x). Remark that,
being f regular and nonconstant, the set of points x of Df with νf (x) ≥ 2 is fi-
nite. We define the singular locus S(f) of f as the divisor

∑
x∈Df

(νf (x)−1)·x
on D and the degree deg S(f) of f by deg S(f) :=

∑
x∈Df

(νf (x)− 1).

Lemma 4.1 Let D and E be real algebraic curves and let f ∈ R∗(D, E). If
g(E) ≥ 1, then deg S(f) ≤ 2g(D)− 2.

Proof. Let fC : DC −→ EC be a complexification of f , let d be the de-
gree of fC and let B(fC) be the branch locus divisor of fC. Define Df :=
Nonsing(D)\f−1(Sing(E)). Identify Df with a Zariski open subset of DC(R)
and Nonsing(E) with a Zariski open subset of EC(R). It follows immediately
that deg S(f) ≤ deg B(fC). On the other hand, by Hurwitz’s formula, we
have that deg B(fC) = 2g(D)− 2− d(2g(E)− 2) ≤ 2g(D)− 2. 2

Lemma 4.2 Let X be a real algebraic variety and let p ∈ X \Isol(X). Then,
there are an irreducible component X ′ of X and an open semi–algebraic subset
A of X such that A ⊂ X ′\Isol(X ′) and p is an accumulation point of A in X.
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Proof. Since the problem is local, we may suppose that X is an algebraic
subset of some Rn. For each t ∈ R+, let Bt(p) be the open ball of Rn centered
at p with radious t and let Ut := X∩Bt(p). Let X1, . . . , Xs be the irreducible
components X∗ of X such that p is an accumulation point of X∗ in X. Choose
ε ∈ R+ in such a way that Uε ⊂

⋃s
i=1 Xi and Uε ∩

⋃s
i=1 Isol(Xi) = ∅. For

each x ∈ Uε, let Ix be the subset of {1, . . . , s} formed by the integers i such
that x ∈ Xi. Define the function h : Uε −→ {1, . . . , s} by h(x) := ]Ix and the
function H : (0, ε] −→ {1, . . . , s} by H(t) := min h|Ut . Let K := max H and
let η ∈ (0, ε] such that min h|Ut = K for each t ∈ (0, η]. For each n ∈ N∗ such
that 1/n < η, fix pn ∈ U1/n \ {p} in such a way that h(pn) = min h|U1/n

= K.
Since {1, . . . , s} has a finite family of subsets with K elements, extracting a
subsequence if needed, we may suppose that each Ipn is equal to some non–
void subset I of {1, . . . , s}. Let A := Uη \

⋃
i 6∈I Xi. The sequence {pn}n lies

in A and converges to p so p is an accumulation point of A. Let x ∈ A. Since
]Ix ≥ K = ]I and x 6∈ ⋃

i 6∈I Xi, it follows that Ix = I. In particular, we have
that A = (Bη(p) ∩⋂

i∈I Xi) \
⋃

i6∈I Xi. Fix i ∈ I and define X ′ := Xi. The
proof is complete. 2

Lemma 4.3 Let X be an algebraic subset of Rn, let Y be an algebraic subset
of Rm and let f ∈ R(X, Y ). Then, there are a nonsingular algebraic subset W
of some RN , a regular map F : X −→ W and a polynomial map P : W −→ Y
such that f = P ◦ F .

Proof. Let us recall the statement of the so–called general Néron desingu-
larization (for the proof, see [55] and [57]): “Let F −→ B be a regular
morphism of noetherian rings where F contains a field of characteristic zero.
Then, for every finitely generated F–algebra A and every F–algebra mor-
phism a : A −→ B, there exist a finitely generated regular F–algebra A′

and two F–algebra morphisms p : A −→ A′ and a′ : A′ −→ B such that
a = a′ ◦ p”. When A is the R–algebra of polynomial functions on Y , B is the
R–algebra of regular functions on X and a : A −→ B is the pullback of f ,
this result is equivalent to the present lemma. 2

Indicate by ‖v‖n the usual norm of a vector v of Rn.

Lemma 4.4 Let X be an algebraic subset of Rn, let Y be a nonsingular
Zariski locally closed subset of Rm and let g ∈ C0(X,Y ) such that, for some
compact subset K of X and for some f ∈ N (X, Y ), g = f on X \ K.
Equip C0(X, Y ) with the compact–open topology. Then, g is approximable by
Nash maps in C0(X, Y ), i.e., it is contained in the closure of N (X, Y ) in
C0(X,Y ).
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Proof. Let g, K and f be as in the statement of the lemma and let U be a
neighborhood of g in C0(X,Y ). Let ρ : U −→ Y be a Nash retraction of an
open semi–algebraic neighborhood U of Y in Rm onto Y and let ξ : X −→ R
be the function which sends x into the distance dist(g(x),Rm \ U) between
g(x) and Rm\U in Rm. Since ξ is positive and coincides with a semi–algebraic
function on X \K, by Proposition 2.6.2 of [4], there are δ ∈ R+ and α ∈ N
such that ξ(x) ≥ δ(1 + ‖x‖n)−α for each x ∈ X. On the other hand, thanks
to Lemma 2.8.1, b) of [1], we know that, for each ε ∈ R+ and for each β ∈ N,
there is Gε,β ∈ N (X,Rm) such that ‖Gε,β(x) − g(x)‖m ≤ ε(1 + ‖x‖n)−β for
each x ∈ X. In this way, choosing ε sufficiently small and β sufficiently large,
the Nash map ρ ◦Gε,β : X −→ Y is well–defined and lies in U (remark that,
if Gε,β(x) ∈ U for some x ∈ X, then ‖(% ◦ Gε,β)(x) − g(x)‖m ≤ 2‖Gε,β(x) −
g(x)‖m). 2

Proof of Theorem 2.27, b). Step I. Suppose Map(X, Y ) = C0(X, Y ). We
must prove that, for each f ∈ R(X, Y ) \ Triv(X, Y ) and each neighborhood
U of f in C0(X, Y ), there exist a map g in U which is not contained in the
closure of R(X, Y ) in C0(X,Y ). Bearing in mind Definition 2.19 and Lemma
1.14, a), it suffices to prove the following affine version of Theorem 2.27, b).

Assertion. Let X be an algebraic subset of Rn (of positive dimension),
let Y be an algebraic subset of Rm (of positive dimension) with pt(Y ) ≥ 1
and let f ∈ R(X, Y ) \ Triv(X, Y ). Equip C0(X,Y ) with the compact–open
topology. Then, there exist a point p ∈ X \ Isol(X) with f(p) 6∈ Isol(Y )
and a compact neighborhood K of p in X with the following properties: for
each ε ∈ R+, there is a map g of C0(X, Y ) such that g = f on X \ K,
supx∈K ‖g(x)− f(x)‖m < ε and g is not contained in the closure of R(X, Y )
in C0(X,Y ).

Let X, Y and f be as in the statement of the previous assertion and fix
a point p in X \ Isol(X) such that q := f(p) 6∈ Isol(Y ). We subdivide the
remainder of the proof of the previous assertion into three parts.

Part I.1. By Lemma 4.2, we can choose an irreducible component Y ′ of
Y and an open semi–algebraic subset A of Y such that A ⊂ Y ′ \ Isol(Y ′)
and q is an accumulation point of A in Y . Since pt,Y ′(q) ≥ 1, there are
a Zariski open neighborhood Z of q in Y ′, a finite family {Di}i∈I of real
algebraic curves with mini∈I g(Di) = pt,Y ′(q) and an injective regular map
ϕ : Z −→ ∏

i∈I Di. Let A′ := A ∩ Z. It is immediate to see that A′ is
an open semi–algebraic subset of Y contained in Y ′ \ Isol(Y ′) such that q is
an accumulation point of A′ in Y . Let V be the Zariski closed subset of X
defined by V := Isol(X)∪f−1(Isol(Y ))∪f−1(Y ′\Z). Since p 6∈ V , we can find
a compact neighborhood K of p in X which does not intersect V . Indicate
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by Ω the interior of K in X and, for each t ∈ R+, denote by Bt(q) the open
ball of Rm centered at q with radious t. Fix ε ∈ R+. Let % : U −→ Y be a
continuous retraction of an open neighborhood U of Y in Rm onto Y (recall
that an affine real algebraic variety is an absolute neighborhood retract), let
Uε := %−1(Y ∩Bε/2(q)) and let η ∈ (0, ε/2) such that B3η(q) ⊂ Uε. By using
the Nash Curve Selection Lemma (see Proposition 8.1.13 of [4]), it is easy to
find a real algebraic curve G of X containing p such that p 6∈ Isol(G) and a
real algebraic curve L of Z such that Nonsing(L)∩A′∩Bη(q) 6= ∅. Since ϕ|L is
nonconstant, there is j ∈ I such that, setting πj :

∏
i∈I Di −→ Dj equal to the

natural projection, the composition map πj ◦ ϕ|L : L −→ Dj is nonconstant
also. By Sard’s theorem, there exists a finite subset L′ of L containing Sing(L)
such that (πj ◦ϕ)(L\L′) ⊂ Nonsing(Dj) and the restriction of πj ◦ϕ between
L \ L′ and Nonsing(Dj) is a local diffeomorphism. Fix p′ ∈ Nonsing(G) ∩ Ω
so close to p that f(p′) ∈ Bη(q) and fix q′ ∈ (L \ L′) ∩ A′ ∩ Bη(q). Let
ν := max{0, 2g(G) − 1}. By using adequate C∞ coordinate systems on
Nonsing(G) locally at p′ and on Nonsing(L) locally at q′, it is easy to find
an open neighborhood H of p′ in Ω and a continuous map h between H and
(L \ L′) ∩ A′ ∩ Bη(q) such that f(H) ⊂ Bη(q), H ∩ Sing(G) = ∅, h(p′) = q′

and the map πj ◦ ϕ ◦ h|H∩Nonsing(G) : H ∩ Nonsing(G) −→ Nonsing(Dj)
is C∞, nonconstant and has at least ν distinct critical points p1, . . . , pν of
order 2. Let K ′ be a compact subset of H such that the interior of K ′ ∩ G
in Nonsing(G) contains {p1, . . . , pν}.

Part I.2. Let {α, β} be a continuous partition of unity subordinate to the
open cover {H, X \K ′} of X. Define the continuous map g′ : X −→ Rm as
follows: g′ := αh + βf on H and g′ := f on X \H. Remark that g′ = h on
K ′ and, for each x ∈ H, it holds:

‖g′(x)− q‖m ≤ ‖g′(x)− f(x)‖m + ‖f(x)− q‖m < ‖h(x)− f(x)‖m + η ≤
≤ ‖h(x)− q‖m + ‖q − f(x)‖m + η < 3η.

Since g′(X) ⊂ U , we can define the continuous map g : X −→ Y by g := %◦g′.
We have: g = h on K ′, g = f on X \H (and hence on X \K), g(H) ⊂ Bε/2(q)
and, for each x ∈ K, ‖g(x)− f(x)‖m < ε (because g(x) = f(x) if x ∈ K \H
and ‖g(x)− f(x)‖m ≤ ‖g(x)− q‖m + ‖q − f(x)‖m < ε if x ∈ H).

Part I.3. It remains to prove that g is not contained in the closure of
R(X, Y ) in C0(X,Y ). Suppose this is not true. Equip C0(K ′ ∩ G,Dj)
with the compact–open topology. Since A′ is open in Y and g(K ′) ⊂ A′,
for each neighborhood V of h∗ := πj ◦ ϕ ◦ g|K′∩G in C0(K ′ ∩ G, Dj), there
exists a neighborhood U of g in C0(X, Y ) with the following properties: if
R ∈ R(X, Y ) ∩ U , then R(K ′) ⊂ A′, (πj ◦ ϕ ◦ R)(K ′ ∩ G) ⊂ Nonsing(Dj)
and the map πj ◦ ϕ ◦R|K′∩G : K ′ ∩G −→ Dj is well–defined, is nonconstant
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and is contained in V . Furthermore, if V is sufficiently small around h∗,
then Rolle’s theorem ensures that the C∞ map πj ◦ ϕ ◦ R|K′∩G has at least
ν distinct critical points in the interior of K ′ ∩ G in Nonsing(G). Fix a
neighborhood U of g in C0(X,Y ) so small that each R ∈ R(X, Y ) ∩ U has
the properties described above. Since K ′ ∩ G is Zariski dense in G and
R(K ′ ∩ G) ⊂ Y ′, it follows that R(G) ⊂ Y ′. Define the real algebraic
curve GR of X by GR := G ∩ R−1(Z) (remark that GR ⊃ K ′ ∩ G) and
the regular map R∗ : GR −→ Dj by R∗ := πj ◦ ϕ ◦ R|GR

. We will show
that the existence of R∗ gives a contradiction. The proof of the previous
assertion will be complete. Remark that g(Dj) ≥ 1 and g(G) = g(GR) so
ν = max{0, 2g(GR) − 1}. If g(GR) = 0, then Lemma 1.6 implies that R∗ is
constant which is false. If g(GR) ≥ 1, then, from Lemma 4.1, it follows that
ν ≤ deg S(R∗) ≤ 2g(GR)− 2 = ν − 1 which is impossible.

Step II. Suppose Map(X, Y ) = Cω(X,Y ) or Map(X,Y ) = N (X, Y ).
It suffices to prove that, for each f ∈ R(X, Y ) \ Triv(X, Y ) and for each
neighborhood U of f in N (X, Y ), there is g ∈ U which is not approximable
by regular maps inN (X,Y ). We may assume that X is an algebraic subset of
Rn and Y is an algebraic subset of Rm. Let f ∈ R(X,Y )\Triv(X, Y ). First,
suppose that f is Zariski locally constant. Let X ′ be a Zariski connected
component of X∗ and let p ∈ X ′ \ Isol(X ′) such that q := f(p) 6∈ Isol(Y ).
Repeat word for word Part I.1 of the previous step. Let c : X −→ Y be the
constant map which sends X into q′. By using an adequate partition of unity
on X and a C∞ coordinate system on L\L′, it is easy to define a continuous
map g′ : X −→ L \ L′ with the following properties: g′ = h on K ′, g′ = c on
X ′ \ K (we can choose K contained in X ′), g′(X ′) ⊂ (L \ L′) ∩ A′ ∩ Bη(q)
and g′ = f on X \ X ′. Remark that, choosing ε sufficiently small, g′ is
arbitrarily close to f in C0(X, Y ). Applying Lemma 4.4 to g′, we find a
map g ∈ N (X, Y ) such that g(X ′) ⊂ L \ L′ and, viewing g′ as a map
between X and Y , g is arbitrarily close to g′ in C0(X,Y ). In particular,
g is arbitrarily close to f in N (X, Y ). Repeating Part I.3, we see that,
choosing g sufficiently close to g′, g is not approximable by regular maps
between X and Y . Suppose now that f is not Zariski locally constant so
dim(ZclY (f(X))) ≥ 1. Remark that, as a map between X and ZclY (f(X)),
f is not trivial and, from Lemma 1.14, a), it follows that pt(ZclY (f(X))) ≥
pt(Y ) ≥ 1. In this way, we may suppose that f(X) is Zariski dense in Y .
By Lemma 4.3, there are a nonsingular algebraic subset W of some RN , a
regular map F : X −→ W and a polynomial map P : W −→ Y such that
f := P ◦ F . Since P (W ) ⊃ f(X), P (W ) is Zariski dense in Y so, by Sard’s
theorem, there is a Zariski closed subset V of Y containing Sing(Y ) such
that dim(V ) < dim(Y ) and the restriction of P between P−1(Y \ V ) and
Y \ V is a submersion. Since f(X) is Zariski dense in Y and dim(Y ) ≥ 1,
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there are a nonsingular point p of X of some positive dimension and a real
algebraic curve G of X such that p ∈ Nonsing(G), q := f(p) ∈ Y \ V
and f |G is nonconstant. Since pt(Y ) ≥ 1 and q lies in an unique irreducible
component of Y∗, there are a Zariski open neighborhood Z of q in Nonsing(Y ),
a finite family {Ej}j∈J of real algebraic curves with minj∈J g(Ej) ≥ 1 and
an injective regular map ψ : Z −→ ∏

j∈J Ej. Define the real algebraic
curve L of Y by L := ZclY (f(G)). Proceeding as in Part I.1, we find a
finite subset L′ of L containing Sing(L) and j ∈ J such that L \ L′ ⊂ Z,
(πj ◦ ψ)(L \ L′) ⊂ Nonsing(Ej) and the restriction of πj ◦ ψ between L \ L′

and Nonsing(Ej) is a local diffeomorphism. Choose a point p′ ∈ G close to p
in G such that, setting q′ := f(p′), q′ is arbitrarily close to q in L, q′ ∈ Y \ V
and lies in L \ L′ (such a point p′ exists because f−1(L′) ∩ G is finite and
p ∈ Nonsing(G)). Let z′ := F (p′). Since P is a submersion over Y \ V ,
it is easy to find a real algebraic curve S of W such that z′ ∈ Nonsing(S),
P (S) ⊂ L and the restriction of P between P−1(L \ L′) ∩ Nonsing(S) and
L \ L′ is a local diffeomorphism at z′ (remark that P (z′) = q′)). Let B be
an open neighborhood of z′ in Nonsing(S) such that B′ := P (U) ⊂ L \ L′,
B′′ := (πj◦ψ◦P )(U) is an open subset of Nonsing(Ej) and both the restriction
maps P |B : B −→ B′ and πj ◦ ψ|B′ : B′ −→ B′′ are diffeomorphisms. Let
ν := max{0, 2g(G) − 1}. Equip C0(X, Y ) with the compact–open topology.
Following the argument used in Part I.1 and Part I.2 to define g′, we obtain
two compact neighborhoods K and K ′ of p′ in X and a continuous map
g′ : X −→ W arbitrarily close to F in C0(X, W ) such that g′ = F on
X \ K, K ′ is contained in the interior of K in X, K ′ ∩ G ⊂ Nonsing(G),
g′(K ′∩G) ⊂ B and the restriction of g′ between K ′∩G and B is a nonconstant
C∞ map having ν distinct critical points of order 2 in the interior of K ′ ∩G
in Nonsing(G). By Lemma 4.4, there is a Nash map g′′ : X −→ W so close
to g′ in C0(X, W ) that, setting g : X −→ Y equal to the composition map
P ◦ g′′, g is arbitrarily close to f in N (X, Y ) and the restriction of πj ◦ ψ ◦ g
between the interior of K ′∩G in Nonsing(G) and Nonsing(Ej) is nonconstant
and has at least ν distinct critical points. Repeating Part I.3, we complete
the proof. 2

We refer the reader to [18] for further results obtained by arguments
similar to the ones used in the previous proof.

Proof of Theorem 2.27, c). Step I. Let us prove the following assertion.

Assertion. Let X and Y be real algebraic varieties (possibly zero–dimensio-
nal ) such that X is irreducible and pt(Y ) ≥ 2 if s := dim(Y ) ≥ 1. Equip
R(X, Y ) with the pointwise topology. Then, R(X,Y ) has a singular quasi–
euclidean stratification S = {Rj}m

j=0 with the following properties: for each
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j ∈ {0, 1, . . . , m}, there are a semi–algebraic set Sj with dim(Sj) ≤ s and an
injective continuous map between Rj and Sj. Moreover, dimBR(X,Y ) = s.

Let us proceed by induction on s. The case s = 0 is trivial because
R(X, Y ) is a finite set equipped with the discrete topology so it is an eu-
clidean set and its Brouwer dimension is zero. Let s ≥ 1. If dim(X) = 0,
then X is a single point and R(X, Y ) is homeomorphic to Y which always
has a singular euclidean stratification. Suppose dim(X) ≥ 1. Let Y1, . . . , Yd

be the irreducible components of Y of dimension s and let Yd+1, . . . , Ye be
the remaining irreducible components. For each j ∈ {1, . . . , d}, we have that
pt(Yj) ≥ pt(Y ) ≥ 2 so there are a non–void affine Zariski open subset Zj of
Yj, a finite family {Dji}nj

i=1 of real algebraic curves with mini∈{1,...,nj} g(Dji) =
pt(Yj) and an injective regular map ϕj : Zj −→ T j :=

∏nj

i=1 Dji. Define

Y ′ :=
⋃d

j=1(Yj \ Zj) ∪
⋃e

j>d Yj ∪
⋃
{(i,j) | 1≤i<j≤d}(Yi ∩ Yj),

R∗ := {f ∈ R(X, Y ) | f(X) 6⊂ Y ′} and R′ := {f ∈ R(X, Y ) | f(X) ⊂ Y ′}.
Remark that Y ′ is Zariski closed in Y , dim(Y ′) < s and, by Lemma 1.14, a),
pt(Y

′) ≥ 2. Moreover, {R∗,R′} is a partition of R(X,Y ), R∗ is open in
R(X, Y ) and hence R′ is closed in R(X, Y ). By induction, it suffices to show
that dimBR∗ = s and there are a semi–algebraic set S with dim(S) ≤ s and
an injective continuous map between R∗ and S. For each j ∈ {1, . . . , d},
define R∗

j := {f ∈ R∗ | f(X) ⊂ Yj}. Fix f ∈ R∗. Since ZclY (f(X)) is irre-
ducible, there exists at least one integer j in {1, . . . , d} such that f(X) ⊂ Yj.
Such an integer must be unique, otherwise f(X) ⊂ Y ′. In this way, R∗

is the disjoint union of R∗
j ’s. Fix j ∈ {1, . . . , d}. Let f ∈ R∗

j and let
p ∈ Nonsing(X) such that f(p) ∈ Yj \ Y ′. Since Yj \ Y ′ is open in Y , there
is a neighborhood U of f in R(X,Y ) with respect to the pointwise topol-
ogy such that, for each g ∈ U , g(p) ∈ Yj \ Y ′. On the other hand, X is
irreducible so each g in U sends X into Yj, i.e., U ⊂ R∗

j . It follows that
{R∗

j}d
j=1 is an open partition of R∗ so it suffices to prove that, for some

j ∈ {1, . . . , d}, dimBR∗
j = s and, for each j ∈ {1, . . . , d}, there are semi–

algebraic sets Sj with dim(Sj) ≤ s and an injective continuous map between
R∗

j and Sj. Fix j ∈ {1, . . . , d}. By Lemma 3.1, we have that the cardinal-
ity of each Ratio∗(X, Dji) is finite. Let αji1, . . . , αj,i,Nji

be the elements of
Ratio∗(X,Dji) for each i ∈ {1, . . . , nj}. Choose a non–void Zariski open sub-
set Wj of X and, for each i ∈ {1, . . . , nj}, maps gji1, . . . , gj,i,Nji

inR∗(Wj, Dji)
which represent the rational maps αji1, . . . , αj,i,Nji

respectively. For each
f ∈ R∗

j , let W ′
f := f−1(Yj \ Y ′). Remark that each W ′

f is a non–void Zariski
open subset of X and f(W ′

f ) ⊂ Zj. Denote by %j : R∗
j −→ Ratio(X,Zj) the

map which sends f into the rational map represented by the restriction of
f between W ′

f and Zj and indicate by ϕ∗j : Ratio(X, Zj) −→ Ratio(X,T j)
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the map which sends a rational map in Ratio(X, Zj) represented by (U, fU)
into the rational map in Ratio(X, T j) represented by (U,ϕj ◦ fU). Since
X is irreducible and ϕj is injective, both %j and ϕ∗j are injective. Iden-
tify Ratio(X, T j) with

∏nj

i=1Ratio(X,Dji) in the natural way. For each
i ∈ {1, . . . , nj}, let πji : T j −→ Dji be the natural projection. For each
χ ⊂ {1, . . . , nj}, let χ′ := {1, . . . , nj} \ χ, let T j

χ′ :=
∏

i∈χ′ Dji (where T j
∅

is considered equal to a point), let πχ′ : T j −→ T j
χ′ be the natural projec-

tion and let Fj(χ) be the set of all functions ψ between χ and N such that
ψ(i) ∈ {1, . . . , Nji} for each i ∈ χ. Remark that if χ = ∅ or Nji = 0 for some
i ∈ χ, Fj(χ) is void. For each χ ⊂ {1, . . . , nj} and for each ψ ∈ Fj(χ), let
Pj,χ,ψ be the set of all elements (β1, . . . , βnj

) of Ratio(X, T j) such that, for
each i ∈ χ, βi = αj,i,ψ(i) and, for each i ∈ χ′, βi is represented by a constant
map between X and Dji. Moreover, define R∗

j,χ,ψ := (ϕ∗j ◦ %j)
−1(Pj,χ,ψ). De-

note by R∗
j,∅ the set of all constant regular maps between X and Yj \ Y ′.

Remark that {R∗
j,χ,ψ}χ⊂{1,...,nj},ψ∈Fj(χ) ∪ {R∗

j,∅} is a partition of R∗
j . In order

to complete the proof of the previous assertion, it suffices to show that:
a) for each χ ⊂ {1, . . . , nj} and for each ψ ∈ Fj(χ), R∗

j,χ,ψ is open in R∗
j

and there are a semi–algebraic set Sj,χ,ψ with dim(Sj,χ,ψ) ≤ s and an injective
continuous map between R∗

j,χ,ψ and Sj,χ,ψ,
b) R∗

j,∅ is open in R∗
j , dimBR∗

j,∅ = s and there is an injective continuous
map between R∗

j,∅ and a s–dimensional semi–algebraic set.
We will prove property a). The proof of b) is easy. Remark that, for each

χ ⊂ {1, . . . , nj} and for each ψ ∈ Fj(χ), we have that

R∗j,χ,ψ := {f ∈ R∗j |πji ◦ ϕj ◦ f = gj,i,ψ(i) on Wj ∩W ′
f for each i ∈ χ

and πχ′ ◦ ϕj ◦ f is constant on Wj ∩W ′
f}.

Fix χ ⊂ {1, . . . , nj}, ψ ∈ Fj(χ) and f ∈ R∗
j,χ,ψ. For each i ∈ χ′, let bi(f) be

the point of Dji such that (πji◦ϕj◦f)(Wj∩W ′
f ) = {bi(f)}. Choose two points

p and q of Wj ∩W ′
f ∩Nonsing(X) such that: gjih(p) 6= gjik(p) for each i ∈ χ

and for each h, k ∈ {1, . . . , Nji} with h 6= k, gjih(p) 6= gjih(q) for each i ∈ χ
and for each h ∈ {1, . . . , Nji} and gjih(p) 6= bi(f) for each i ∈ χ′ and for each
h ∈ {1, . . . , Nji}. For each i ∈ χ and for each h ∈ {1, . . . , Nji}, let Up

jih be
a neighborhood of gjih(p) in Dji and let U q

jih be a neighborhood of gjih(q) in
Dji such that: Up

jih ∩Up
jik = ∅ for each i ∈ χ and for each h, k ∈ {1, . . . , Nji}

with h 6= k and Up
jih ∩ U q

jih = ∅ for each i ∈ χ and for each h ∈ {1, . . . , Nji}.
For each i ∈ χ′, let Vji be a neighborhood of bi(f) in Dji such that Vji ∩
{gji1(p), . . . , gj,i,Nji

(p)} = ∅. Let A be the neighborhood of ϕj(f(p)) in T j

defined by A :=
∏

i∈χ Up
j,i,ψ(i) ×

∏
i∈χ′ Vji and let B be the neighborhood

46



of ϕj(f(q)) in T j defined by B :=
∏

i∈χ U q
j,i,ψ(i) ×

∏
i∈χ′ Dji. Since ϕj is

continuous and Yj \ Y ′ is an open subset of Y containing {f(p), f(q)}, there
exist a neighborhood A′ of f(p) in Y contained in Yj \Y ′ and a neighborhood
of B′ of f(q) in Y contained in Yj \Y ′ such that ϕj(A

′) ⊂ A and ϕj(B
′) ⊂ B.

Define a neighborhood U of f in R∗
j by setting: U := {ξ ∈ R∗

j | ξ(p) ∈
A′ and ξ(p) ∈ B′}. From the properties of Up

jih’s and U q
jih’s, it follows easily

that U ⊂ R∗
j,χ,ψ. In particular, we have that each R∗

j,χ,ψ is open in R∗
j

as desired. The previous argument gives some more. The map Hj,χ,ψ :
R∗

j,χ,ψ −→
∏

i∈χ′ Dji which sends f into (bi(f))i∈χ′ is continuous. Moreover,
it is injective because ϕ∗j ◦ %j is and its image is contained in the semi–
algebraic set Sj,χ,ψ := πχ′(ϕj(Zj)) whose dimension is less than or equal to
s = dim(Zj).

Step II. Let X1, . . . , Xb be the irreducible components of X. For each i ∈
{1, . . . , b}, equip R(Xi, Y ) with the pointwise topology. By Step I, we know
that each R(Xi, Y ) has a singular quasi–euclidean stratification {R(i)

j }mi
j=0

such that, for each i ∈ {1, . . . , b} and for each j ∈ {0, 1, . . . , mi}, there are
a semi–algebraic set Sji with dim(Sji) ≤ s and an injective continuous map
ϕji : R(i)

j −→ Sji. Moreover, dimBR(X, Y ) = s. Let Φ : R(X,Y ) −→∏b
i=1R(Xi, Y ) be the map which sends f into (f |X1 , . . . , f |Xb

). Remark that
Φ is injective and continuous. Let I be the set of all b–uples (σ1, . . . , σb)
in Nb such that σi ∈ [0,mi] for each i ∈ {1, . . . , b}. Define an ordering
on I as follows: (σ1, . . . , σb) ¹ (δ1, . . . , δb) in I if and only if σi ≤ δi for
each i ∈ {1, . . . , b}. For each σ = (σ1, . . . , σb) ∈ I, let Pσ be the subset of∏b

i=1R(Xi, Y ) defined by Pσ :=
∏b

i=1R(i)
σi

and let Rσ := Φ−1(Pσ). Since

{Pσ}σ∈I is a quasi–euclidean stratification of
∏b

i=1R(Xi, Y ), {Rσ}σ∈I is a
quasi–euclidean stratification of R(X,Y ) also. Fix σ = (σ1, . . . , σb) ∈ I. The
map (

∏b
i=1 ϕσi,i) ◦ Φ : Rσ −→ Sσ :=

∏b
i=1 Sσi,i is injective and continuous

so dimBRσ ≤ dimB(Sσ) = dim(Sσ) ≤ bs. It follows that dimBR(X, Y ) =
maxσ∈I dimBRσ ≤ bs. If ξ is nice, then the subspace of R(X,Y ) formed by
Zariski locally constant maps between X and Y is homeomorphic to Y a so
dimBR(X, Y ) ≥ as. 2

Proof of Theorem 2.28. We follow the proof of Theorem 2.27, c). First,
suppose X irreducible (and, possibly, zero–dimensional). Since bgpt(Y ) ≥ 2,
there exist a finite family {Di}i∈I of real algebraic curves with mini∈I g(Di) =
bgpt(Y ) and an biregular embedding ϕ of Y into T :=

∏
i∈I Di. Fix i ∈ I.

By Lemma 3.1, we know that R∗(X, Di) is finite. Let {gi1, . . . , gi,Ni
} be the

elements of R∗(X,Di) and let πi : T −→ Di be the natural projection. For
each non–void subset χ of I, define: χ′ := I \ χ, Tχ′ :=

∏
i∈χ′ Di, πχ′ : T −→

Tχ′ as the natural projection and F (χ) as the set of all functions ψ : χ −→ N
such that ψ(i) ∈ {1, . . . , Ni} for each i ∈ χ. Let A be the family of all
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non–void subsets χ of I such that F (χ) 6= ∅, i.e, Ni ≥ 1 (or, equivalently,
R∗(X, Di) 6= ∅) for each i ∈ χ. For each χ ∈ A and for each ψ ∈ F (χ), define
Rχ,ψ by Rχ,ψ := {f ∈ R(X, Y ) | πi ◦ ϕ ◦ f = gi,ψ(i) for each i ∈ χ and πχ′ ◦
ϕ ◦ f is constant} and, for each f ∈ Rχ,ψ, indicate by a(f) the point of Tχ′

such that (πχ′ ◦ ϕ ◦ f)(X) = {a(f)}. Let Const(X,Y ) be the constant maps
between X and Y . Proceeding as in Step I of the above–mentioned proof,
we obtain that {Const(X, Y )} ∪ {Rχ,ψ}χ∈A,ψ∈F (χ) is a partition of R(X, Y )
whose elements are open and closed in R(X, Y ). Moreover, for each χ ∈ A
and for each ψ ∈ F (χ), the map Hχ,ψ : Rχ,ψ −→ Tχ′ which sends f into a(f)
is continuous and injective. In order to prove that R(X,Y ) is an euclidean
set, it suffices to show that Const(X, Y ) is an euclidean set and each Hχ,ψ

is a topological embedding. Const(X,Y ) is homeomorphic to Y so it is an
euclidean set. Let d be a metric for Y and, for each i ∈ I, let d′i be a metric
for Di. Define the metric d′ for T by d′(x, y) :=

∑
i∈I d′i(πi(x), πi(y)). Fix

χ ∈ A and ψ ∈ F (χ). Let f ∈ Rχ,ψ, let K be a compact subset of X and let
ε ∈ R+. In order to prove that Hχ,ψ is a homeomorphism onto its image, it
suffices to show that there is δ ∈ R+ with the following property: if g ∈ Rχ,ψ

and supx∈K d′(ϕ(g(x)), ϕ(f(x))) < δ, then supx∈K d(g(x), f(x)) < ε. This
fact follows immediately from the continuity of ϕ−1 : ϕ(Y ) −→ Y . Remark
that Hχ,ψ(Rχ,ψ) ⊂ πχ′(ϕ(Y )) so, using Theorems II.3 and II.7 of [51], it
follows that dimCRχ,ψ ≤ s. On the other hand, dimC Const(X,Y ) = s so, by
Theorems II.1 and II.7 of [51], we have that dimCR(X,Y ) = s. Suppose Y
compact. It remains to show that R(X, Y ) is compact. Since Const(X, Y )
is homeomorphic to Y which is compact, it suffices to prove that each Rχ,ψ

is compact also. Fix χ ∈ A and ψ ∈ F (χ). We will show that Rχ,ψ is
sequentially compact and hence compact (because Rχ,ψ is metrizable). Let
{fn}n∈N be a sequence in Rχ,ψ. The corresponding sequence {a(fn)}n∈N of
Tχ′ is contained in πχ′(ϕ(Y )) which is compact so, extracting a subsequence if
needed, we may suppose that {a(fn)}n∈N converges to a point a in πχ′(ϕ(Y )).
Define the regular map ξ : X −→ T by setting πi ◦ ξ = gi,ψ(i) for each
i ∈ χ and πχ′(ξ(X)) = {a}. Equip R(X, T ) and R(X,ϕ(Y )) with the
compact–open topology. Evidently, the sequence {ϕ ◦ fn}n∈N of R(X,T )
converges to ξ. Since ϕ(Y ) is closed in T , it follows that ξ(X) ⊂ ϕ(Y ) so
{ϕ ◦ fn}n∈N converges to ξ in R(X,ϕ(Y )) also. Define the element f of Rχ,ψ

by f := ϕ−1 ◦ ξ. Since ϕ−1 is continuous, it turns out that {fn}n∈N converges
to f in R(X,Y ). This completes the proof when X is irreducible. In the
reducible case, it suffices to repeat the argument of Step II of the previous
proof. 2

Proof of Theorem 2.30. Following the proofs of Theorem 2.27 and Theorem
2.28, we obtain without difficulties points a), c) and c′). Let us prove point b).
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We consider only the case Smo(M,N) = C∞(M,N). The proof of other cases
can be easily infered from the following proof of the above–mentioned case
and from well–known analytic and Nash approximation results for C∞ maps.
Fix f ∈ Σ(M,N). We must prove that there is g ∈ C∞(M, N) arbitrarily
close to f which is not approximable by regular maps. Choose q ∈ N in
such a way that f−1(q) contains a 1–dimensional semi–algebraic subset S
of M . Making use of standard argument of Semi–algebraic Geometry, we
can construct a real algebraic curve G of M such that the interior Ω of
S ∩ Nonsing(G) in Nonsing(G) is non–void. Fix p ∈ Ω. Let N ′ be the
irreducible component of N containing q. Since pt,N ′(q) ≥ 1, there are an
affine Zariski open neighborhood Z of q in N ′, a finite family {Di}i∈I of
real algebraic curves with mini∈I g(Di) ≥ 1 and an injective regular map
ϕ : Z −→ ∏

i∈I Di. We may also suppose that, setting πj :
∏

i∈I Di −→
Dj equal to the natural projection for each j ∈ I, each composition map
πj ◦ ϕ : Z −→ Dj is nonconstant. From the latter assumption and Sard’s
theorem, it follows the existence of a proper Zariski closed subset W of Z
with the following properties: for each y ∈ Z \ W , there is j ∈ I such
that πj(ϕ(y)) is a nonsingular point of Dj and is a regular values of the
restriction ϕj of πj ◦ ϕ between (πj ◦ ϕ)−1(Nonsing(Dj)) and Nonsing(Dj).
Up to compose f with a C∞ automorphism of N arbitrarily close to the
identity on N , we may suppose that q ∈ Z \W . Let j ∈ I such that πj(ϕ(q))
has the properties described above. Fix a 1–dimensional C∞ submanifold L
of (πj ◦ϕ)−1(Nonsing(Dj)) containing q such that ϕj sends diffeomorphically
an open neighborhood V of q in L into an open subset of Nonsing(Dj). Let
ν := max{0, 2g(G)− 1}. By using an adequate C∞ partition of unity on M
and C∞ coordinate systems on M locally at p and on N locally at q, it is
easy to find an open neighborhood U of p in Ω and a map g in C∞(M, N)
arbitrarily close to f such that g(U) ⊂ V and g|U : U −→ V is nonconstant
and has ν distinct critical points of order 2. Such a map is not approximable
by regular maps as one can see repeating the argument used in Part I.3 of
the proof of Theorem 2.27, b). 2
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[26] M. Coste, Reconnâitre effectivement les ensembles algébriques réels,
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