Let H be the space of quaternions, with its standard hypercomplex structure. Let $\mathcal R(\Omega)$ be the module of \emph{$\psi$-regular} functions on $\Omega$. For every $p\in H$, $p^2=-1$, $\mathcal R(\Omega)$ contains the space of holomorphic functions w.r.t. the complex structure $J_p$ induced by $p$. We prove the existence, on any bounded domain $\Omega$, of $\psi$-regular functions that are not $J_p$-holomorphic for any $p$. Our starting point is a result of Chen and Li concerning maps between hyperk\ahler manifolds
Holomorphic functions and regular quaternionic functions on the hyperkähler space H / Perotti, Alessandro. - ELETTRONICO. - (2005), pp. 1-9. (Intervento presentato al convegno V ISAAC Congress tenutosi a Catania nel 25-30 July 2005).
Holomorphic functions and regular quaternionic functions on the hyperkähler space H
Perotti, Alessandro
2005-01-01
Abstract
Let H be the space of quaternions, with its standard hypercomplex structure. Let $\mathcal R(\Omega)$ be the module of \emph{$\psi$-regular} functions on $\Omega$. For every $p\in H$, $p^2=-1$, $\mathcal R(\Omega)$ contains the space of holomorphic functions w.r.t. the complex structure $J_p$ induced by $p$. We prove the existence, on any bounded domain $\Omega$, of $\psi$-regular functions that are not $J_p$-holomorphic for any $p$. Our starting point is a result of Chen and Li concerning maps between hyperk\ahler manifoldsFile | Dimensione | Formato | |
---|---|---|---|
RegIsaacProcs.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
197.88 kB
Formato
Adobe PDF
|
197.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione