HOLOMORPHIC FUNCTIONS AND REGULAR QUATERNIONIC FUNCTIONS ON THE HYPERKÄHLER SPACE $\mathbb H$

A. PEROTTI^{*}

Department of Mathematics University of Trento Via Sommarive, 14 I-38050 Povo Trento ITALY E-mail: perotti@science.unitn.it

Let \mathbb{H} be the space of quaternions, with its standard hypercomplex structure. Let $\mathcal{R}(\Omega)$ be the module of ψ -regular functions on Ω . For every $p \in \mathbb{H}$, $p^2 = -1$, $\mathcal{R}(\Omega)$ contains the space of holomorphic functions w.r.t. the complex structure J_p induced by p. We prove the existence, on any bounded domain Ω , of ψ -regular functions that are not J_p -holomorphic for any p. Our starting point is a result of Chen and Li concerning maps between hyperkähler manifolds, where a similar result is obtained for a less restricted class of quaternionic maps. We give a criterion, based on the energy-minimizing property of holomorphic maps, that distinguishes J_p -holomorphic functions among ψ -regular functions.

1. Introduction

Let \mathbb{H} be the space of quaternions, with its standard hypercomplex structure given by the complex structures J_1, J_2 on $T\mathbb{H} \simeq \mathbb{H}$ defined by left multiplication by i and j. Let J_1^*, J_2^* be the dual structures on $T^*\mathbb{H}$.

We consider the module $\mathcal{R}(\Omega) = \{f = f_1 + f_2 j \mid \overline{\partial} f_1 = J_2^*(\overline{\partial} \overline{f_2}) \text{ on } \Omega\}$ of left ψ -regular functions on Ω . These functions are in a simple correspondence with Fueter left regular functions, since they can be obtained from them by means of a real coordinate reflection in \mathbb{H} . They have been studied by many authors (see for instance Sudbery⁷, Shapiro and Vasilevski⁵ and Nono⁴). The space $\mathcal{R}(\Omega)$ contains the identity mapping and any holomorphic mapping (f_1, f_2) on Ω defines a ψ regular function $f = f_1 + f_2 j$. This is no more true if we replace the class of ψ -regular functions with that of regular functions. The definition of ψ -regularity is also equivalent to that of *q*-holomorphicity given by Joyce² in the setting of hypercomplex manifolds.

For every $p \in \mathbb{H}$, $p^2 = -1$, $\mathcal{R}(\Omega)$ contains the space $Hol_p(\Omega, \mathbb{H}) = \{f : \Omega \to \mathbb{H} \mid df + pJ_p(df) = 0 \text{ on } \Omega\}$ of holomorphic functions w.r.t. the complex structure

^{*}Work partially supported by MIUR (Project "Proprietà geometriche delle varietà reali e complesse") and GNSAGA of INDAM.

 $J_p = p_1 J_1 + p_2 J_2 + p_3 J_3$ on Ω and to the structure induced on \mathbb{H} by left-multiplication by p (J_p -holomorphic functions on Ω).

We show that on every domain Ω there exist ψ -regular functions that are not J_p -holomorphic for any p. A similar result was obtained by Chen and Li¹ for the larger class of q-maps between hyperkähler manifolds.

This result is a consequence of a criterion (cf. Theorem 4.1) of J_p -holomorphicity, which is obtained using the energy-minimizing property of ψ -regular functions (cf. Proposition 4.1) and ideas of Lichnerowicz³ and Chen and Li¹.

In Sec. 4.4 we give some other applications of the criterion. In particular, we show that if Ω is connected, then the intersection $Hol_p(\Omega, \mathbb{H}) \cap Hol_{p'}(\Omega, \mathbb{H})$ $(p \neq \pm p')$ contains only affine maps. This result is in accord with what was proved by Sommese⁶ about quaternionic maps (cf. Sec. 3.2 for definitions).

2. Fueter-regular and ψ -regular functions

2.1. Notations and definitions

We identify the space \mathbb{C}^2 with the set \mathbb{H} of quaternions by means of the mapping that associates the pair $(z_1, z_2) = (x_0 + ix_1, x_2 + ix_3)$ with the quaternion $q = z_1 + z_2 j = x_0 + ix_1 + jx_2 + kx_3 \in \mathbb{H}$. Let Ω be a bounded domain in $\mathbb{H} \simeq \mathbb{C}^2$. A quaternionic function $f = f_1 + f_2 j \in C^1(\Omega)$ is *(left) regular* on Ω (in the sense of Fueter) if

$$\mathcal{D}f = \frac{\partial f}{\partial x_0} + i\frac{\partial f}{\partial x_1} + j\frac{\partial f}{\partial x_2} + k\frac{\partial f}{\partial x_3} = 0 \quad \text{on } \Omega$$

Given the "structural vector" $\psi = (1, i, j, -k)$, f is called *(left)* ψ -regular on Ω if

$$\mathcal{D}'f = \frac{\partial f}{\partial x_0} + i\frac{\partial f}{\partial x_1} + j\frac{\partial f}{\partial x_2} - k\frac{\partial f}{\partial x_3} = 0 \quad \text{on } \Omega.$$

We recall some properties of regular functions, for which we refer to the papers of Sudbery⁷, Shapiro and Vasilevski⁵ and Nōno⁴:

- (1) f is ψ -regular $\Leftrightarrow \quad \frac{\partial f_1}{\partial \bar{z}_1} = \frac{\partial \overline{f_2}}{\partial z_2}, \quad \frac{\partial f_1}{\partial \bar{z}_2} = -\frac{\partial \overline{f_2}}{\partial z_1}$ (2) Every holomorphic map (f_1, f_2) on Ω defines a ψ -regular function $f = f_1 + \frac{\partial f_2}{\partial z_1}$
- (2) Every holomorphic map (f_1, f_2) on Ω defines a ψ -regular function $f = f_1 + f_2 j$.
- (3) The complex components are both holomorphic or both non-holomorphic.
- (4) Every regular or ψ -regular function is harmonic.
- (5) If Ω is pseudoconvex, every complex harmonic function is the complex component of a ψ -regular function on Ω .

$$*\overline{\partial}f_1 = -\frac{1}{2}\partial(\overline{f_2}d\overline{z_1}\wedge d\overline{z_2})$$

(6) The space $\mathcal{R}(\Omega)$ of ψ -regular functions on Ω is a *right* \mathbb{H} -module with integral representation formulas.

 $\mathbf{2}$

3

2.2. q-holomorphic functions

A definition equivalent to ψ -regularity has been given by Joyce² in the setting of hypercomplex manifolds. Joyce introduced the module of *q*-holomorphic functions on a hypercomplex manifold. On this module he defined a (commutative) product. A hypercomplex structure on the manifold \mathbb{H} is given by the complex structures J_1, J_2 on $T\mathbb{H} \simeq \mathbb{H}$ defined by left multiplication by *i* and *j*. Let J_1^*, J_2^* be the dual structures on $T^*\mathbb{H}$. In complex coordinates

$$\begin{cases} J_1^* dz_1 = i \, dz_1, & J_1^* dz_2 = i \, dz_2 \\ J_2^* dz_1 = -d\bar{z}_2, & J_2^* dz_2 = d\bar{z}_1 \\ J_3^* dz_1 = i \, d\bar{z}_2, & J_3^* dz_2 = -i \, d\bar{z}_1 \end{cases}$$

where we make the choice $J_3^* = J_1^* J_2^* \Rightarrow J_3 = -J_1 J_2$.

A function f is ψ -regular if and only if f is q-holomorphic, i.e.

$$df + iJ_1^*(df) + jJ_2^*(df) + kJ_3^*(df) = 0.$$

In complex components $f = f_1 + f_2 j$, we can rewrite the equations of ψ -regularity as

$$\overline{\partial}f_1 = J_2^*(\partial\overline{f}_2).$$

3. Holomorphic maps

3.1. Holomorphic functions w.r.t. a complex structure J_p

Let $J_p = p_1 J_1 + p_2 J_2 + p_3 J_3$ be the complex structure on \mathbb{H} defined by a unit imaginary quaternion $p = p_1 i + p_2 j + p_3 k$ in the sphere $S^2 = \{p \in \mathbb{H} \mid p^2 = -1\}$. It is well-known that every complex structure compatible with the standard hyperkähler structure of \mathbb{H} is of this form. If $f = f^0 + if^1 : \Omega \to \mathbb{C}$ is a J_p -holomorphic function, i.e. $df^0 = J_p^*(df^1)$ or, equivalently, $df + iJ_p^*(df) = 0$, then f defines a ψ -regular function $\tilde{f} = f^0 + pf^1$ on Ω . We can identify \tilde{f} with a holomorphic function

$$\tilde{f}: (\Omega, J_p) \to (\mathbb{C}_p, L_p)$$

where $\mathbb{C}_p = \langle 1, p \rangle$ is a copy of \mathbb{C} in \mathbb{H} and L_p is the complex structure defined on $T^*\mathbb{C}_p \simeq \mathbb{C}_p$ by left multiplication by p.

More generally, we can consider the space of holomorphic maps from (Ω, J_p) to (\mathbb{H}, L_p)

$$Hol_p(\Omega, \mathbb{H}) = \{ f : \Omega \to \mathbb{H} \mid \overline{\partial}_p f = 0 \text{ on } \Omega \} = Ker\overline{\partial}_p$$

(the J_p -holomorphic maps on Ω) where $\overline{\partial}_p$ is the Cauchy-Riemann operator w.r.t. the structure J_p

$$\overline{\partial}_p = \frac{1}{2} \left(d + p J_p^* \circ d \right).$$

4

For any positive orthonormal basis $\{1, p, q, pq\}$ of \mathbb{H} $(p, q \in S^2)$, the equations of ψ -regularity can be rewritten in complex form as

$$\overline{\partial}_p f_1 = J_q^* (\partial_p \overline{f}_2)$$

where $f = (f^0 + pf^1) + (f^2 + pf^3)q = f_1 + f_2q$. Then every $f \in Hol_p(\Omega, \mathbb{H})$ is a ψ -regular function on Ω .

Remark 3.1. 1) The *identity* map is in $Hol_i(\Omega, \mathbb{H}) \cap Hol_j(\Omega, \mathbb{H})$ but not in $Hol_k(\Omega, \mathbb{H})$.

2) $Hol_{-p}(\Omega, \mathbb{H}) = Hol_p(\Omega, \mathbb{H})$

3) If $f \in Hol_p(\Omega, \mathbb{H}) \cap Hol_{p'}(\Omega, \mathbb{H})$, with $p \neq \pm p'$, then $f \in Hol_{p''}(\Omega, \mathbb{H})$ for every $p'' = \frac{\alpha p + \beta p'}{\|\alpha p + \beta p'\|}$.

4) ψ -regularity distinguishes between holomorphic and anti-holomorphic maps: if f is an *anti-holomorphic* map from (Ω, J_p) to (\mathbb{H}, L_p) , then f can be ψ -regular or not. For example, $f = \bar{z}_1 + \bar{z}_2 j \in Hol_j(\Omega, \mathbb{H}) \cap Hol_k(\Omega, \mathbb{H})$ is a ψ -regular function induced by the anti-holomorphic map

$$(\bar{z}_1, \bar{z}_2) : (\Omega, J_1) \to (\mathbb{H}, L_i)$$

while $(\bar{z}_1, 0) : (\Omega, J_1) \to (\mathbb{H}, L_i)$ induces the function $g = \bar{z}_1 \notin \mathcal{R}(\Omega)$.

3.2. Quaternionic maps

A particular class of J_p -holomorphic maps is constituted by the quaternionic maps on the quaternionic manifold Ω . Sommese⁶ defined quaternionic maps between hypercomplex manifolds: a quaternionic map is a map

$$f: (X, J_1, J_2) \to (Y, K_1, K_2)$$

that is holomorphic from (X, J_1) to (Y, K_1) and from (X, J_2) to (Y, K_2) .

In particular, a quaternionic map

$$f:(\Omega,J_1,J_2)\to(\mathbb{H},J_1,J_2)$$

is an element of $Hol_i(\Omega, \mathbb{H}) \cap Hol_j(\Omega, \mathbb{H})$ and then a ψ -regular function on Ω . Sommese showed that quaternionic maps are affine. They appear for example as transition functions for 4-dimensional quaternionic manifolds.

4. Non-holomorphic ψ -regular maps

A natural question can now be raised: can ψ -regular maps always be made holomorphic by rotating the complex structure or do they constitute a new class of harmonic maps? In other words, does the space $\mathcal{R}(\Omega)$ contain the union $\bigcup_{p \in S^2} Hol_p(\Omega, \mathbb{H})$ properly?

Chen and Li^1 posed and answered the analogous question for the larger class of q-maps between hyperkähler manifolds. In their definition, the complex structures of the source and target manifold can rotate *independently*. This implies that also anti-holomorphic maps are q-maps.

4.1. Energy and regularity

The energy (w.r.t. the euclidean metric g) of a map $f : \Omega \to \mathbb{C}^2 \simeq \mathbb{H}$, of class $C^1(\overline{\Omega})$, is the integral

$$\mathcal{E}(f) = \frac{1}{2} \int_{\Omega} \|df\|^2 dV = \frac{1}{2} \int_{\Omega} \langle g, f^*g \rangle dV = \frac{1}{2} \int_{\Omega} tr(J_{\mathbb{C}}(f) \overline{J_{\mathbb{C}}(f)}^T) dV$$

where $J_{\mathbb{C}}(f)$ is the Jacobian matrix of f with respect to the coordinates $\bar{z}_1, \bar{z}_2, \bar{z}_2$.

Lichnerowicz³ proved that holomorphic maps between Kähler manifolds minimize the energy functional in their homotopy classes. Holomorphic maps f smooth on $\overline{\Omega}$ minimize energy in the homotopy class constituted by maps u with $u_{|\partial\Omega} = f_{|\partial\Omega}$ which are homotopic to f relative to $\partial\Omega$.

From the theorem, functions $f \in Hol_p(\Omega, \mathbb{H})$ minimize the energy functional in their homotopy classes (relative to $\partial\Omega$). More generally:

Proposition 4.1. If f is ψ -regular on Ω , then it minimizes energy in its homotopy class (relative to $\partial\Omega$).

Proof. We repeat arguments of Lichnerowicz, Chen and Li. Let $i_1 = i, i_2 = j, i_3 = k$ and let

$$\mathcal{K}(f) = \int_{\Omega} \sum_{\alpha=1}^{3} \langle J_{\alpha}, f^* L_{i_{\alpha}} \rangle dV, \quad \mathcal{I}(f) = \frac{1}{2} \int_{\Omega} \|df + \sum_{\alpha=1}^{3} L_{i_{\alpha}} \circ df \circ J_{\alpha} \|^2 dV.$$

Then $\mathcal{K}(f)$ is a homotopy invariant of f and $\mathcal{I}(f) = 0$ if and only if $f \in \mathcal{R}(\Omega)$. A computation similar to that made by Chen and Li¹ gives

$$\mathcal{E}(f) + \mathcal{K}(f) = \frac{1}{4}\mathcal{I}(f) \ge 0.$$

From this the result follows immediately.

4.2. A criterion for holomorphicity

We now come to our main result. Let $f: \Omega \to \mathbb{H}$ be a function of class $C^1(\overline{\Omega})$.

Theorem 4.1. Let $A = (a_{\alpha\beta})$ be the 3×3 matrix with entries $a_{\alpha\beta} = -\int_{\Omega} \langle J_{\alpha}, f^*L_{i_{\beta}} \rangle dV$. Then

- (1) f is ψ -regular if and only if $\mathcal{E}(f) = trA$.
- (2) If $f \in \mathcal{R}(\Omega)$, then A is real, symmetric and

 $trA \ge \lambda_1 = \max\{eigenvalues \ of \ A\}.$

It follows that $\det(A - (trA)I_3) \le 0$.

- (3) If $f \in \mathcal{R}(\Omega)$, then f belongs to some space $Hol_p(\Omega, \mathbb{H})$ if and only if $\mathcal{E}(f) = trA = \lambda_1$ or, equivalently, $\det(A (trA)I_3) = 0$.
- (4) If $\mathcal{E}(f) = trA = \lambda_1$, $X_p = (p_1, p_2, p_3)$ is a unit eigenvector of A relative to the largest eigenvalue λ_1 if and only if $f \in Hol_p(\Omega, \mathbb{H})$.

6

4.3. The existence of non-holomorphic ψ -regular maps

The criterion can be applied to show that on every domain Ω in \mathbb{H} , there exist ψ -regular functions that are not holomorphic.

Example 4.1. Let $f = z_1 + z_2 + \overline{z}_1 + (z_1 + z_2 + \overline{z}_2)j$. Then f is ψ -regular, but not holomorphic, since on the unit ball B in \mathbb{C}^2 , f has energy $\mathcal{E}(f) = 6$ and the matrix A of the theorem is

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Therefore $\mathcal{E}(f) = trA > 2 = \lambda_1$.

In the preceding example, the Jacobian matrix of the function has even rank, a necessary condition for a holomorphic map. In the case when the rank is odd, the non-holomorphicity follows immediately. For example, $g = z_1 + \bar{z}_1 + \bar{z}_2 j$ is ψ -regular (on any Ω) but not J_p -holomorphic, for any p, since $rkJ_{\mathbb{C}}(f)$ is odd.

Example 4.2. The linear, ψ -regular functions constitute a \mathbb{H} -module of dimension 3 over \mathbb{H} , generated e.g. by the set $\{z_1 + z_2j, z_2 + z_1j, \overline{z_1} + \overline{z_2}j\}$. An element

$$f = (z_1 + z_2 j)q_1 + (z_2 + z_1 j)q_2 + (\bar{z}_1 + \bar{z}_2 j)q_3$$

is holomorphic if and only if the coefficients $q_1 = a_1 + a_2 j$, $q_2 = b_1 + b_2 j$, $q_3 = c_1 + c_2 j$ satisfy the 6th-degree real homogeneous equation

$$\det(A - (trA)I_3) = 0$$

obtained after integration on B. The explicit expression of this equation is given in the Appendix. So "almost all" (linear) ψ -regular functions are non-holomorphic.

Example 4.3. A positive example (with $p \neq i, j, k$). Let $h = \overline{z}_1 + (z_1 + \overline{z}_2)j$. On the unit ball h has energy 3 and the matrix A is

$$A = \begin{bmatrix} -1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

then $\mathcal{E}(h) = trA$ is equal to the (simple) largest eigenvalue, with unit eigenvector $X = \frac{1}{\sqrt{5}}(1,0,2)$. It follows that h is J_p -holomorphic with $p = \frac{1}{\sqrt{5}}(i+2k)$, i.e. it satisfies the equation

$$df + \frac{1}{5}(i+2k)(J_1^* + 2J_3^*)(df) = 0.$$

7

Example 4.4. We give a quadratic example. Let $f = |z_1|^2 - |z_2|^2 + \bar{z}_1 \bar{z}_2 j$. f has energy 2 on B and the matrix A is

$$A = \begin{bmatrix} -2/3 & 0 & 0\\ 0 & 4/3 & 0\\ 0 & 0 & 4/3 \end{bmatrix}$$

Then f is ψ -regular but not holomorphic w.r.t. any complex structure J_p .

4.4. Other applications of the criterion

1) If $f \in Hol_p(\Omega, \mathbb{H}) \cap Hol_{p'}(\Omega, \mathbb{H})$ for two \mathbb{R} -independent p, p', then $X_p, X_{p'}$ are independent eigenvectors relative to λ_1 . Therefore the eigenvalues of the matrix A are $\lambda_1 = \lambda_2 = -\lambda_3$.

If $f \in Hol_p(\Omega, \mathbb{H}) \cap Hol_{p'}(\Omega, \mathbb{H}) \cap Hol_{p''}(\Omega, \mathbb{H})$ for three \mathbb{R} -independent p, p', p''then $\lambda_1 = \lambda_2 = \lambda_3 = 0 \Rightarrow A = 0$ and therefore f has energy 0 and f is a (locally) constant map.

2) If Ω is connected, then $Hol_p(\Omega, \mathbb{H}) \cap Hol_{p'}(\Omega, \mathbb{H}) \ (p \neq \pm p')$ contains only affine maps (cf. Sommese⁶).

We can assume p = i, p' = j since in view of property 3) of Remark 3.1 we can suppose p and p' orthogonal quaternions and then we can rotate the space of imaginary quaternions. Let $f \in Hol_i(\Omega, \mathbb{H}) \cap Hol_j(\Omega, \mathbb{H})$ and $a = \left(\frac{\partial f_1}{\partial z_1}, \frac{\partial f_2}{\partial z_1}\right)$,

 $b = \left(\frac{\partial \overline{f_2}}{\partial z_2}, -\frac{\partial \overline{f_1}}{\partial z_2}\right).$ Since $f \in Hol_i(\Omega, \mathbb{H})$, the matrix A is obtained after integration on Ω of the matrix

$$\begin{bmatrix} |a|^2 + |b|^2 & 0 & 0 \\ 0 & 2Re\langle a, b \rangle & -2Im\langle a, b \rangle \\ 0 & -2Im\langle a, b \rangle & -2Re\langle a, b \rangle \end{bmatrix}$$

where $\langle a, b \rangle$ denotes the standard hermitian product of \mathbb{C}^2 .

Since $f \in Hol_j(\Omega, \mathbb{H})$, we have $\int_{\Omega} Im\langle a, b \rangle dV = 0$ and $\int_{\Omega} |a - b|^2 dV = 0$. Therefore a = b on Ω . Then a is holomorphic and anti-holomorphic w.r.t. the standard structure J_1 . This means that a is constant on Ω and f is an affine map with linear part of the form

$$(a_1z_1 - \bar{a}_2z_2) + (a_2z_1 + \bar{a}_1z_2)j$$

i.e. the right multiplication of $q = z_1 + z_2 j$ by the quaternion $a_1 + a_2 j$.

3) We can give a classification of ψ -regular functions based on the dimension of the set of complex structures w.r.t. which the function is holomorphic. Let Ω be connected. Given a function $f \in \mathcal{R}(\Omega)$, we set

$$\mathcal{J}(f) = \{ p \in S^2 \mid f \in Hol_p(\Omega, \mathbb{H}) \}.$$

The space $\mathcal{R}(\Omega)$ of ψ -regular functions is the disjoint union of subsets of functions of the following four types:

8

- (i) f is J_p -holomorphic for three \mathbb{R} -independent structures $\implies f$ is a constant and $\mathcal{J}(f) = S^2$.
- (ii) f is J_p -holomorphic for exactly two \mathbb{R} -independent structures $\implies f$ is a ψ -regular, invertible affine map and $\mathcal{J}(f)$ is an equator $S^1 \subset S^2$.
- (iii) f is J_p -holomorphic for exactly one structure J_p (up to sign of p) $\Longrightarrow \mathcal{J}(f)$ is a two-point set S^0 .
- (iv) f is ψ -regular but not J_p -holomorphic w.r.t. any complex structure $\Longrightarrow \mathcal{J}(f) = \emptyset$.

5. Sketch of proof of Theorem 4.1

If $f \in \mathcal{R}(\Omega)$, then $\mathcal{E}(f) = -\mathcal{K}(f) = trA$. Let

$$\mathcal{I}_p(f) = \frac{1}{2} \int_{\Omega} \|df + L_p \circ df \circ J_p\|^2 dV.$$

Then we obtain, as in Chen and Li¹

$$\mathcal{E}(f) + \int_{\Omega} \langle J_p, f^* L_p \rangle dV = \frac{1}{4} \mathcal{I}_p(f).$$

If $X_p = (p_1, p_2, p_3)$, then

$$\begin{split} XAX^T &= \sum_{\alpha,\beta} p_{\alpha} p_{\beta} a_{\alpha\beta} = -\int_{\Omega} \langle \sum_{\alpha} p_{\alpha} J_{\alpha}, f^* \sum_{\beta} p_{\beta} L_{i_{\beta}} \rangle dV \\ &= -\int_{\Omega} \langle J_p, f^* L_p \rangle dV = \mathcal{E}(f) - \frac{1}{4} \mathcal{I}_p(f). \end{split}$$

Then $trA = \mathcal{E}(f) = XAX^T + \frac{1}{4}\mathcal{I}_p(f) \geq XAX^T$, with equality if and only if $\mathcal{I}_p(f) = 0$ i.e if and only if f is a J_p -holomorphic map.

Let M_{α} ($\alpha = 1, 2, 3$) be the matrix associated to J_{α}^* w.r.t. the basis $\{d\bar{z}_1, dz_1, d\bar{z}_2, dz_2\}$. The entries of the matrix A can be computed by the formula

$$a_{\alpha\beta} = -\int_{\Omega} \langle J_{\alpha}, f^* L_{i_{\beta}} \rangle dV = \frac{1}{2} \int_{\Omega} tr(\overline{B_{\alpha}}^T C_{\beta}) dV$$

where $B_{\alpha} = M_{\alpha} J_{\mathbb{C}}(f)^T$ for $\alpha = 1, 2, B_{\alpha} = -M_{\alpha} J_{\mathbb{C}}(f)^T$ for $\alpha = 3$ and $C_{\beta} = J_{\mathbb{C}}(f)^T M_{\beta}$ for $\beta = 1, 2, 3$.

A direct computation shows how from the particular form of the Jacobian matrix of a ψ -regular function it follows the symmetry property of A.

Appendix

We give the explicit expression of the 6^{th} -degree real homogeneous equation satisfied by the complex coefficients of a linear J_p -holomorphic ψ -regular function.

$$\frac{1}{16}det(A - (trA)I_3) = a_1a_2b_2c_1^2\bar{b}_1 - a_1a_2b_1c_1c_2\bar{b}_1 - a_1^2b_2c_1c_2\bar{b}_1 + a_1^2b_1c_2^2\bar{b}_1 - a_1c_1^2\bar{a}_1\bar{b}_1^2 - a_1c_1c_2\bar{a}_2\bar{b}_1^2 + a_2^2b_2c_1^2\bar{b}_2 - a_2^2b_1c_1c_2\bar{b}_2 - a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_1c_2^2\bar{b}_2 - a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_1c_2^2\bar{b}_2 - a_1a_2b_2c_1c_2\bar{b}_2 - a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_1c_2^2\bar{b}_2 - a_1a_2b_2c_1c_2\bar{b}_2 - a_1a_2b_2c_2c_2\bar{b}_2 - a_1a_2b_2c_2c_2c_2\bar{b}_2 - a_1a$$

9

 $\begin{aligned} a_2c_1^2\bar{a}_1\bar{b}_1\bar{b}_2 &-a_1c_1c_2\bar{a}_1\bar{b}_1\bar{b}_2 &-a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 &-a_1c_2^2\bar{a}_2\bar{b}_1\bar{b}_2 &-a_2c_1c_2\bar{a}_1\bar{b}_2^2 &-a_2c_2^2\bar{a}_2\bar{b}_2^2 \\ a_1a_2b_1b_2c_1\bar{c}_1 &-a_1^2b_2^2c_1\bar{c}_1 &-a_1a_2b_1^2c_2\bar{c}_1 &+a_1^2b_1b_2c_2\bar{c}_1 &-2a_1b_1c_1\bar{a}_1\bar{b}_1\bar{c}_1 &-a_1b_2c_1\bar{a}_2\bar{b}_1\bar{c}_1 &-a_1b_2c_1\bar{a}_2\bar{b}_1\bar{c}_1 &-a_1b_2c_1\bar{a}_2\bar{b}_1\bar{c}_1 &-a_1b_2c_1\bar{a}_2\bar{b}_2\bar{c}_1 &+a_1b_1c_2\bar{a}_1\bar{b}_2\bar{c}_1 &-2a_2b_2c_1\bar{a}_2\bar{b}_2\bar{c}_1 &+a_2b_1c_2\bar{a}_2\bar{b}_2\bar{c}_1 &-a_1b_2c_2\bar{a}_2\bar{b}_2\bar{c}_1 &+c_1\bar{a}_1\bar{a}_2\bar{b}_1\bar{b}_2\bar{c}_1 &+c_2\bar{a}_2^2\bar{b}_1\bar{b}_2\bar{c}_1 &-c_1\bar{a}_1^2\bar{b}_2^2\bar{c}_1 &-c_2\bar{a}_1\bar{a}_2\bar{b}_2^2\bar{c}_1 &-a_1b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_2\bar{b}_2\bar{c}_1 &-a_1b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_2\bar{b}_2\bar{c}_2 &+a_1b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_1a_2b_2^2c_1\bar{c}_2 &-a_2^2b_1^2c_2\bar{c}_2 &+a_1b_1c_1\bar{a}_1\bar{a}_1\bar{c}_2 &-a_1a_2b_2^2c_1\bar{c}_2 &-a_2^2b_1^2c_2\bar{c}_2 &+a_1a_2b_1b_2c_2\bar{c}_2 &-a_2b_1c_1\bar{a}_1\bar{b}_1\bar{c}_2 &+a_1b_2c_1\bar{a}_1\bar{b}_1\bar{c}_2 &-2a_1b_1c_2\bar{a}_1\bar{b}_1\bar{c}_2 &+a_2b_2c_1\bar{a}_2\bar{b}_1\bar{c}_2 &-2a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_2\bar{b}_1\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_2\bar{b}_1\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_2c_1\bar{a}_2\bar{b}_2\bar{c}_1\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_2 &-a_2b_1c_2\bar{a}_1\bar{b}_2\bar{c}_1\bar{$

References

- 1. J. Chen J. and Li, J. Differential Geom. 55 355–384 (2000).
- 2. D. Joyce, Quart. J. Math. Oxford 49 129–162 (1998).
- 3. A. Lichnerowicz, Symp. Math. III, Bologna, 341-402 (1970).
- 4. K. Nōno, Bull. Fukuoka Univ. Ed. III 35 11–17 (1985).
- M.V. Shapiro and N.L. Vasilevski, Complex Variables Theory Appl. 27 no.1 17–46 (1995).
- 6. A.J. Sommese, Math. Ann. **212** 191–214 (1975).
- 7. A. Sudbery, Mat. Proc. Camb. Phil. Soc. 85 199-225 (1979).