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Let H be the space of quaternions, with its standard hypercomplex structure. Let R(Q2)
be the module of 1-regular functions on Q. For every p € H, p?> = —1, R(Q) contains
the space of holomorphic functions w.r.t. the complex structure J, induced by p. We
prove the existence, on any bounded domain 2, of 1-regular functions that are not J,-
holomorphic for any p. Our starting point is a result of Chen and Li concerning maps
between hyperkahler manifolds, where a similar result is obtained for a less restricted
class of quaternionic maps. We give a criterion, based on the energy-minimizing prop-
erty of holomorphic maps, that distinguishes Jp-holomorphic functions among )-regular
functions.

1. Introduction

Let H be the space of quaternions, with its standard hypercomplex structure given
by the complex structures Ji, Jo on TH ~ H defined by left multiplication by ¢ and
j. Let J7, J5 be the dual structures on T*H.

We consider the module R(Q) = {f = fi + f2j | 0f1 = J5(0f2) on Q} of
left i-regular functions on 2. These functions are in a simple correpondence with
Fueter left regular functions, since they can be obtained from them by means of a
real coordinate reflection in H. They have been studied by many authors (see for
instance Sudbery”, Shapiro and Vasilevski® and Nono?). The space R(2) contains
the identity mapping and any holomorphic mapping (f1, f2) on  defines a -
regular function f = f; + foj. This is no more true if we replace the class of
i-regular functions with that of regular functions. The definition of t-regularity
is also equivalent to that of g-holomorphicity given by Joyce? in the setting of
hypercomplex manifolds.

For every p € H, p* = —1, R(Q2) contains the space Hol,(Q,H) = {f : Q —
H | df + pJ,(df) = 0 on 2} of holomorphic functions w.r.t. the complex structure
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Jp = p1J1+p2J2+p3J3 on Q and to the structure induced on H by left-multiplication
by p (Jp-holomorphic functions on ).

We show that on every domain €2 there exist i-regular functions that are not
Jp-holomorphic for any p. A similar result was obtained by Chen and Li' for the
larger class of ¢-maps between hyperkahler manifolds.

This result is a consequence of a criterion (cf. Theorem 4.1) of Jp,-holomorphicity,
which is obtained using the energy-minimizing property of 1-regular functions (cf.
Proposition 4.1) and ideas of Lichnerowicz® and Chen and Li'.

In Sec. 4.4 we give some other applications of the criterion. In particular, we
show that if Q is connected, then the intersection Hol,(Q2,H) N Hol, (2, H) (p #
+p’) contains only affine maps. This result is in accord with what was proved by
Sommese® about quaternionic maps (cf. Sec. 3.2 for definitions).

2. Fueter-regular and -regular functions
2.1. Notations and definitions

We identify the space C? with the set H of quaternions by means of the mapping
that associates the pair (z1,22) = (zo + ix1,z2 + ix3) with the quaternion ¢ =
21 + 29) = xg + ix1 + jxo + kxs € H. Let Q be a bounded domain in H ~ C2. A
quaternionic function f = fi + faj € C*(Q) is (left) regular on Q (in the sense of
Fueter) if

of . of of of

Df = 2 4i— 4 j + k= Q
f 8$0+ 83’51+ 6x2+ 8333 =0 on

Given the “structural vector” ¢ = (1,4, 5, —k), f is called (left) ¥-regular on § if

of .0 f  Of 8 f
D' — =0 Q.
f 6],‘0 i 8.731 axg 833‘3 on
We recall some properties of regular functions, for which we refer to the papers
of Sudbery”, Shapiro and Vasilevski® and Nono®:
ofi _9fh 0f _ Of

(1) f is ¢-regular < %5 =~ 0% 35— 0o

(2) Every holomorphic map (f1, f2) on  defines a 1-regular function f = f; +
f2J.

(3) The complex components are both holomorphic or both non-holomorphic.

(4) Every regular or t¢-regular function is harmonic.

(5) If Q is pseudoconvex, every complex harmonic function is the complex com-
ponent of a -regular function on €.

*gfl = —%B(Edgl A\ dZQ)

(6) The space R(Q2) of 1-regular functions on 2 is a right H-module with integral
representation formulas.
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2.2. g-holomorphic functions

A definition equivalent to t-regularity has been given by Joyce? in the setting of
hypercomplex manifolds. Joyce introduced the module of ¢-holomorphic functions
on a hypercomplex manifold. On this module he defined a (commutative) product.
A hypercomplex structure on the manifold H is given by the complex structures
Ji,J2 on TH ~ H defined by left multiplication by ¢ and j. Let J{, J5 be the dual
structures on T*H. In complex coordinates

Jl*dzl :id21, JideQ ZidZQ
J2*d2’1 = 7d22, J;dZQ = le
J;dzl = Z.dfg, JédeQ = —1 dil

where we make the choice J5 = J{J5 = J3 = —J1Ja.
A function f is i-regular if and only if f is g-holomorphic, i.e.

df + iJ7(df) + 3J5(df) + kJ3 (df) = 0.

In complex components f = fi1+ fo7, we can rewrite the equations of y-regularity
as

5fl = J5(8?2)~

3. Holomorphic maps
3.1. Holomorphic functions w.r.t. a complex structure J,

Let J, = p1J1 + p2J2 + p3J3 be the complex structure on H defined by a unit
imaginary quaternion p = p1i+poj+psk in the sphere S? = {p € H | p? = —1}. Tt is
well-known that every complex structure compatible with the standard hyperkéhler
structure of H is of this form. If f = fO+if!: Q — Cis a J,-holomorphic function,
ie. df® = Jx(df') or, equivalently, df + i.J(df) = 0, then f defines a t-regular
function f = fO+pf! on Q. We can identify f with a holomorphic function
(@ Jp) = (Cp, Ly)

where C, = (1, p) is a copy of C in H and L, is the complex structure defined on
T*C, ~ C, by left multiplication by p.

More generally, we can consider the space of holomorphic maps from (€2, J,) to
(H, Ly)

Hol,(QH)={f:Q—H|9d,f =0o0nQ} = Kerd,

(the J,-holomorphic maps on ) where 9, is the Cauchy-Riemann operator w.r.t.
the structure J),

= 1
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For any positive orthonormal basis {1,p,q,pq} of H (p,q € S?), the equations
of 1-regularity can be rewritten in complex form as

5pfl = J;(apfﬁ

where f = (O +pf') + (f2 +pf*)g = fi + fog. Then every f € Hol,(,H) is a
1-regular function on 2.

Remark 3.1. 1) The identity map is in Hol;(Q,H) N Hol;(,H) but not in
Holy (Q, H).

9) Hol_,(Q, H) = Hol,(, H)

3) If f € Holp(,H) N Hol,y (2, H), with p # £p’, then f € Hol, (2, H) for
every p = pebLly.

4) 1-regularity distinguishes between holomorphic and anti-holomorphic maps:
if f is an anti-holomorphic map from (9, J,) to (H, L), then f can be 1-regular or
not. For example, f = 2z, + Z25 € Hol; (2, H) N Holy (2, H) is a 1-regular function
induced by the anti-holomorphic map

(21722) : (Qa ‘]1) - (Ha LZ)
while (21,0) : (Q,J1) — (H, L;) induces the function g = z; ¢ R(Q).

3.2. Quaternionic maps

A particular class of J,-holomorphic maps is constituted by the quaternionic maps
on the quaternionic manifold €. Sommese® defined quaternionic maps between
hypercomplex manifolds: a quaternionic map is a map

[(X,Ji,J2) — (Y, K1, K»)

that is holomorphic from (X, .J1) to (Y, K1) and from (X, J3) to (Y, K3).
In particular, a quaternionic map

f : (Qa J17J2) - (]HL J17J2)

is an element of Hol;(Q,H) N Hol;(Q2,H) and then a t-regular function on €.
Sommese showed that quaternionic maps are affine. They appear for example as
transition functions for 4-dimensional quaternionic manifolds.

4. Non-holomorphic 1-regular maps

A natural question can now be raised: can -regular maps always be made holomor-
phic by rotating the complex structure or do they constitute a new class of harmonic
maps? In other words, does the space R(2) contain the union (J,¢ g Holp (€2, H)
properly?

Chen and Li' posed and answered the analogous question for the larger class of
g-maps between hyperkahler manifolds. In their definition, the complex structures
of the source and target manifold can rotate independently. This implies that also
anti-holomorphic maps are g-maps.
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4.1. Energy and regularity

The energy (w.r.t. the euclidean metric g) of a map f : Q — C? ~ H, of class
C1(9Q), is the integral

&)=y [Py =3 [ .radv =3 [ aenTetn’av

where Jg(f) is the Jacobian matrix of f with respect to the coordinates z, z1, Za, 22.
Lichnerowicz? proved that holomorphic maps between Kahler manifolds mini-
mize the energy functional in their homotopy classes. Holomorphic maps f smooth
on ) minimize energy in the homotopy class constituted by maps u with ujp0 = flan
which are homotopic to f relative to 0f2.
From the theorem, functions f € Hol, (€2, H) minimize the energy functional in
their homotopy classes (relative to 9€2). More generally:

Proposition 4.1. If f is ¢-reqular on ), then it minimizes energy in its homotopy
class (relative to 02).

Proof. We repeat arguments of Lichnerowicz, Chen and Li. Let i1 = i,i5 = j,i3 =
k and let

3 . 1 3 )
K= [ e BV, 0= [ 15+ 3 i odf o dafav.

Then K(f) is a homotopy invariant of f and Z(f) = 0 if and ounly if f € R(Q2). A
computation similar to that made by Chen and Li' gives

£(H) +K(f) = {2(F) 2 0.

From this the result follows immediately. O

4.2. A criterion for holomorphicity

We now come to our main result. Let f : Q — H be a function of class C' ().

Theorem 4.1. Let A = (aqp) be the 3 X 3 matriz with entries aq,g =
_fQ<Ja7f*Liﬁ>dV. Then

(1) f is y-regular if and only if E(f) = trA.
(2) If f € R(Q), then A is real, symmetric and

trA > Ay = max{eigenvalues of A}.

It follows that det(A — (trA)I3) < 0.

(8) If f € R(2), then f belongs to some space Hol,(2,H) if and only if E(f) =
trA =M\ or, equivalently, det(A — (trA)Is) = 0.

(4) If E(f) = trA = X\, X, = (p1,p2,p3) is a unit eigenvector of A relative to
the largest eigenvalue A1 if and only if f € Hol, (2, H).
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4.3. The existence of non-holomorphic {-regular maps

The criterion can be applied to show that on every domain € in H, there exist
1-regular functions that are not holomorphic.

Example 4.1. Let f = 21 + 22+ 21 + (21 + 22 + 22)j. Then f is ¢-regular, but not
holomorphic, since on the unit ball B in C?, f has energy £(f) = 6 and the matrix
A of the theorem is

200
A=1(020
002

Therefore E(f) =trd > 2= Ay.

In the preceding example, the Jacobian matrix of the function has even rank, a
necessary condition for a holomorphic map. In the case when the rank is odd, the
non-holomorphicity follows immediately. For example, g = 21 + 21 + 22 is ¢-regular
(on any Q) but not J,-holomorphic, for any p, since rkJc(f) is odd.

Example 4.2. The linear, 1-regular functions constitute a H-module of dimension
3 over H, generated e.g. by the set {21 + 227, 22 + 2174, 21 + 225 }. An element

f=(z14220)q1 + (22 + 215)g2 + (Z1 + Z27)qs3

is holomorphic if and only if the coefficients ¢1 = a1 +a27, g2 = b1+b2j, g3 = c1+c2j
satisfy the 6!"-degree real homogeneous equation

det(A — (trA)I3) =0

obtained after integration on B. The explicit expression of this equation is given in
the Appendix. So “almost all” (linear) ¢-regular functions are non-holomorphic.

Example 4.3. A positive example (with p # i,7,k). Let h = z; + (21 + Z2)j. On
the unit ball h has energy 3 and the matrix A is

-102
A=10 20
202

then £(h) = trA is equal to the (simple) largest eigenvalue, with unit eigenvector
X = %(1,0,2). It follows that h is J,-holomorphic with p = %(z + 2k), ie. it
satisfies the equation

df + (i + 2k)(J7 + 2J5)(df) = 0.
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Example 4.4. We give a quadratic example. Let f = |21]? — |22]? + Z122j. f has
energy 2 on B and the matrix A is

—-2/3 0 0
A=| 0 4/3 0
0 0 4/3

Then f is 1-regular but not holomorphic w.r.t. any complex structure .Jj,.

4.4. Other applications of the criterion

1) If f € Hol,(,H) N Hol, (2, H) for two R-independent p,p’, then X,, X, are
independent eigenvectors relative to A\;. Therefore the eigenvalues of the matrix A
are )\1 = )\2 = —>\3.

If f € Holp(Q,H) N Hol, (,H) N Holy (2, H) for three R-independent p, p’, p”
then A\; = Ay = A3 = 0 = A = 0 and therefore f has energy 0 and f is a (locally)
constant map.

2) If Q is connected, then Hol,(Q,H) N Hol, (2, H) (p # +p') contains only
affine maps (cf. Sommese®).

We can assume p = i, p’ = j since in view of property 3) of Remark 3.1 we
can suppose p and p’ orthogonal quaternions and then we can rotate the space

of imaginary quaternions. Let f € Hol;(Q2,H) N Hol;(2,H) and a = <8f1 an),

_ 82’1 ’ 821
_(0fa Ofi . L . . .
b ==, ——=—). Since f € Hol;(Q2, H), the matrix A is obtained after integration

322’ 322
on {2 of the matrix
la|? + |b]? 0 0
0 2Re(a,b) —2Im{a,b)
0 —2Im(a,b) —2Re(a,b)

where (a,b) denotes the standard hermitian product of C2.

Since f € Hol;(,H), we have [, Im{a,b)dV = 0 and [, ]a — b]*dV = 0.
Therefore a = b on 2. Then a is holomorphic and anti-holomorphic w.r.t. the
standard structure J;. This means that a is constant on  and f is an affine map
with linear part of the form

(@121 — @222) + (a221 + @122)]

i.e. the right multiplication of ¢ = z; + 22 by the quaternion a; + asj.

3) We can give a classification of ¢-regular functions based on the dimension of
the set of complex structures w.r.t. which the function is holomorphic. Let © be
connected. Given a function f € R(Q), we set

J(f)={peS?*| fe Hol,(Q,H)}.

The space R(2) of 1-regular functions is the disjoint union of subsets of functions
of the following four types:
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(i) f is Jp-holomorphic for three R-independent structures
= f is a constant and J(f) = S2.
(ii) f is Jp-holomorphic for exactly two R-independent structures
= f is a 1-regular, invertible affine map and J(f) is an equator S* C S2.
(iii) f is Jp-holomorphic for exactly one structure J, (up to sign of p) = J(f)
is a two-point set SY.
(iv) f is t-regular but not J,-holomorphic w.r.t. any complex structure =

J(f)=0.

5. Sketch of proof of Theorem 4.1
If f € R(Q), then E(f) = —K(f) =trA. Let

1
L) =5 [ 105+ Lyods o g PV,
Then we obtain, as in Chen and Li!
" 1
&0+ [ U L)aV = JT,(1).

If XP = (p17p27p3)7 then

xXAxT = Zpapﬁaaﬁ =- /Q<Zpa‘]w fr ZpﬁLiﬁ)dV
o, o B

_ / U £ LYV = £0) = 33,01,
Q

Then trA = £(f) = XAXT + 17,(f) > XAXT, with equality if and only if
Z,(f) = 0 i.e if and only if f is a J,-holomorphic map.

Let M, (o« = 1,2,3) be the matrix associated to J* w.r.t. the basis
{dz1,dz1,dZ2,dze}. The entries of the matrix A can be computed by the formula

1 .
(ap = —/(Ja,f*L¢B>dV - 5/ tr(Ba Cp)dV
Q Q

where B, = MyJc(f)T for @« = 1,2, B, = —M,Jc(f)T for @« = 3 and C5 =
J(c(f)TMﬁ for ,3 = 1,273.

A direct computation shows how from the particular form of the Jacobian matrix
of a 1-regular function it follows the symmetry property of A.

Appendix

We give the explicit expression of the 6¢"-degree real homogeneous equation satisfied
by the complex coefficients of a linear J,-holomorphic 1-regular function.

%det(A — (tT’A)Ig) = alangC%El — a1a261010251 — a%bQClch_)l + a%blcgl_)l —
alc%(_zll_ﬁ — (110102(_126% + angC%EQ — a%blclcgl_u — a1a2b2016252 + alagblcggg -
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GQC%&li)lBQ - alclczdll;lgg — a20102d26162 — alc%dgi)lgg — agclcgélgg — GQC%ELQB% +
arasbibacicy — a%b%clél — a1a2b§0261 + a%bleCQEl — 2a1b101d15161 — albzclagi)lél —
a1b102a25161 — agblcl&lggél — 2a1b201@16261 + alblcgﬁlggél — 20@1)201@26261 +
a2b102625261 — a1b202d252(§1 + 61@162616251 + 62@3616251 — 616%6351 — Cgalagi)gél —
alb%&lé% — Cle]_anQE% + blal@gggé% + bga,%BQE% + a%blbgclég — alagbgclég — G;%b%CQEQ +
arasbibococy — a2b101615162 + a1b201d15162 — 2a1b162@16152 + a2b261@26162 —
2&2()102@25152—aleCQQQZ)lég—leha,QB%EQ—CQ&%B%EQ—a2b261&16262—agblcgalggég—
2&2()202@25252 + Clafglggég + 82&1@516252 — agb%alélég — a1bibsaicica —
aob1baaoC1Co — alb%&25152 — bl&ldgglélég — bga§516162 — b1&%626152 — b261&2526162 —
agblbgalég — agb%agég + bla%l;lég + bzalfbgl;lé% =0
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